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In Stegeman (2018) a model for simultaneous component analysis (SCA) based on Tucker3

is proposed. It can be used for component analysis in multi-set data, i.e., observations of

the same variables in several different samples possibly of unequal size. Let the observed

scores on J variables for sample k be collected in the Nk × J matrix Xk, k = 1, . . . , K.

We assume that the columns of Xk are centered. The SCA-T3 model is a new member of

the family of SCA models in Timmerman and Kiers (2003). SCA-T3 approximates Xk by

Ak

(∑R
r=1 ckr Gr

)
BT by minimizing

∑
k ‖Xk − Ak

(∑R
r=1 ckr Gr

)
BT‖2. For this purpose

an alternating least squares (ALS) algorithm is derived in the manuscript. The notation is

as follows: Ak (Nk ×P ) contains the centered component scores such that N−1k AT
kAk = IP ,

B (J ×Q) is the common loading matrix, C (K × R) contains weights ckr for the samples,

and P × Q × R core array G with P × Q slices Gr contains the weights of each triplet

of components. Although SCA-T3 seems complicated at first, rotations may be used to

obtain simple structure in the core G, loading matrix B, and weights matrix C. This greatly

facilitates interpretation. In the Matlab code the orthogonal rotation procedure of Kiers

(1998) is used for this purpose. Next, we show how to use the Matlab code for fitting

SCA-T3 to multi-set data.

The centered observed scores Xk are stacked into the matrix X = [XT
1 . . . XT

K ]T . The

sample sizes are stacked into the vector N = (N1 . . . NK)T . After specifying the number

of variables J , the number of samples K, and the numbers of components (P,Q,R), the

following Matlab command fits SCA-T3 to the dataset:

[A, B, C, G, EV, fp, fptot] = SCA T3(X, N, J, K, P, Q, R, conv, runs, rotation, direct) .
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The ALS algorithm for SCA-T3 is stopped when the relative decrease of the objective func-

tion drops below conv (e.g., conv=1e-7). The ALS algorithm is started multiple times with

the number of runs defined by runs=[run1 run2]. The solution for the run with the small-

est value of the objective function is kept. The number of runs with random starting values

is equal to run1 and one run with rationally chosen starting values is added when run2=1.

The options for rotation to simple structure are specified by the vector rotation=[opt1

opt2 opt3 opt4], with opt1=0 for no rotation, opt1=1 for rotation to simple core G and

loading matrix B, opt1=2 for rotation to simple G, B, and C, and opt1=3 for rotation to

simple G only. The parameters opt2, opt3, opt4 indicate whether or not to rotate in the

first, second, and third mode (yes=1, no=0). Finally, for fitting SCA-T3 to observed scores

one must set direct=1.

The output of SCA T3.m is as follows. Estimated component scores Ak are stacked in the

matrix A = [AT
1 . . . AT

K ]T . The estimated loading matrix and weights matrix are available

as B and C, respectively. The estimated core array is given as matrix G = [G1 . . . GR].

The explained variance due to each term corresponding to a core entry can be found in the

matrix EV. The vector fp contains the fit percentage for each sample k, and fptot is the

total fit percentage. The explained variances in EV add up to fptot. For more details and

considerations of fitting SCA-T3 we refer to the manuscript.

SCA-T3 can also be fitted to observed covariance matrices Cov(Xk) when the observed

scores Xk themselves are not available. SCA-T3 in covariance form reads as Cov(Xk) ≈
B
(∑R

r=1 ckr G
T
r

)(∑R
r=1 ckr Gr

)
BT . In the manuscript the following heuristic procedure is

used to fit this model. First, eigendecompositions are used to obtain Yk such that Cov(Xk) =

YT
k Yk, k = 1, . . . , K. Second, SCA-T3 is fitted as Yk ≈ Ãk

(∑R
r=1 ckr Gr

)
BT with ÃT

k Ãk =

IP . The following Matlab command fits SCA-T3 to observed covariance matrices:

[B, C, G, EV, fp, fptot] = SCA T3 cov(Sigma, J, K, P, Q, R, conv, runs, rotation) .

Here, the observed covariance matrices are stacked in the matrix Sigma= [Cov(X1) . . . Cov(XK)].

The other input parameters are the same as above. Again, for details we refer to the

manuscript.

The Matlab code also includes the files varimcoco.m and orthmax2.m which are pro-

grammed by Henk Kiers, Department of Psychometrics and Statistics, University of Gronin-

gen, and perform the orthogonal rotation procedure. Also included is the file Data IQSES.m
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that contains rescaled correlation matrices of the ability test dataset analyzed in Stegeman

(2018) and previously analyzed by McGaw and Jöreskog (1971).
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