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Candecomp / Parafac (CP) model

Z = aiobioc + ... + agobrocy + E

Z,=A C, B+ E, frontal slice k
C, = diag(row k of C)




rank(Z) = min{R: Z = a;obioC; + ... + agobgoCr }

rank(aoboc) =1

Computation of CP solution

minimize ssq(E) over (A,B,C)
optimal X = (A,B,C) is a best rank-R approximation of Z

computation (A,B,C) by iterative algorithm



The Candecomp / Parafac problem

Minimize ssq(Z-Y)
over S;={Y withrank < R}

= if Z & Sz, then an optimal solution X (if it exists)
will be a boundary point of Sg

But: the set S is not closed for R = 2

Bini et al. (1979), Paatero (2000), Lim (2004)
De Silva & Lim (2008)



A misleading picture

set Sx

rank < R

CP updates Y .-‘.

rank >R




Suppose Y = (A,B,C) —— optimal X and X & S;

Then, some rank-1 terms a,ob,o€, converge to

linear dependency and infinite norm

= diverging components (‘degeneracy”)

In practice also: slow convergence of CP algorithm
(“swamp”)

Kruskal et al. (1989), Krijnen et al. (2008)
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Two diverging components

Y® = a. o b o ¢ YY = a;0bio ¢

o®®
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o®

Y® + YO remains “small” and contributes to
a better CP fit



Three diverging components
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Y® + YO + YW remains “small” and contributes
to a better CP fit



0.48
—0.66

- 0.57

Example: 3x3x2 with R=3
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How often do diverging components occur ?

array Z rank(Z) R coii‘n\sorr?ie?wgcs?
2X2X2 3 R=2 always *
IxIx2 I+1 R=1 always *

IxIx2 I or +1 R< I | sometimes *

IxJx2, I>J | min(Z, 2J) R<J | sometimes *

*any Z ; proven by De Silva & Lim (2008)
* random Z ; conjectured/partial proof by Stegeman (2008)
see Stegeman (2007) for several /xJx3 cases




Some remarks

1. If the CP problem does not have an optimal solution,
then any CP algorithm trying to minimize ssq(Z — Y)
will terminate with diverging components.

(Krijnen et al., 2008)

2. We do not consider cases of diverging components
where an optimal CP solution exists, but the CP

algorithm gets slow or stuck near the boundary.
(Mitchell & Burdick, 1994; Paatero, 2000; Stegeman, 2009)
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How to avoid diverging components (1)

=» make sure CP has an optimal solution

By imposing restrictions in CP:

e A, B or Cis restricted to have orthogonal columns
(Krijnen et al., 2008)

e Z is nonnegative and A, B and C are restricted to
be nonnegative (Lim, 2005; Lim & Comon, 2009)
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How to avoid diverging components (2)

=» change the CP problem into: (De Silva & Lim, 2008)

Minimize ssq(Z-Y)

over closure of Sz

What is heeded?

= Complete characterization of boundary points

=» Algorithm to find an optimal boundary point

13



Tucker3 model and block decomposition

R P Q‘
= ZZZ rog (a0 pr Cq) + E

r=1 p=1 g=1

=(AB,C):G + E  with G: RxPxQ core array
(Tucker, 1966)

= Z (A;B,C,+G, decomposition in block terms
d

(De Lathauwer, 2008)
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IxJx2_with R < min(ZJ)

Y in closure of Sz satisfies Y = (S,T,I,)*H
with 'S = T'T = I; and
H (RxRx2) in closure of S;°

rank(Y) = rank(H)

Y boundary pointof S < H boundary point of S;

De Silva & Lim (2008)
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Classification of RxRx2 arrays w.r.t. Sg’

H = [H; | H,] with nonsingular H;

Interior of S;” : Hy(H;)™* has R real distinct eigenvalues

Boundary S;” : Hy(H;)' has R real eigenvalues, not all
distinct

rank(H) = R if Hy(H,)* diagonalizable
rank(H) > R if Hy(H;)" not diag.

Exterior of Sz” : Hy(H;)™? has some complex eigenvalues




H =[H; | H,] with singular H;

G = (I;Iz;U)-H withsome U (2x2) nonsingular

e Interior / boundary / exterior same for G and H
o If G; nonsingular, then classification as above

e If G; singular for all U, then boundary point

Ja’ Ja’ (1979), Ten Berge (1991), Ten Berge & Kiers (1999)
Stegeman (2006,2010)



Generalized Schur Decomposition (/xJx2)

Z, = Qa R, QbT + E4 slice k = 1,2

with Q.'Q. = Q,'Q, = Iz , Ry (RxR) upper triangular

Z=(Q.,Q,I)'R + E with R = [R; | R;]

closure of S; equals {Y: Y =(Q,Q,I,)‘R }

Stegeman & De Lathauwer (2009), Stegeman (2010)
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e Jacobi-type algorithm fits GSD to Z (fast!) and
obtains optimal solution X with GSD (Qa,Q, R1,R>)

e Jordan form Ry(R;)* =P J P! gives decomp. of X

X1 =Q.R; Q' =(Q.P) Is (P"R; Q")
X>=Q:R; Q' =(Q:P) J (P'R; Q")

1x1 Jordan block < nondiverging component
mxm Jordan block < limit of m diverging comp.

Stegeman & De Lathauwer (2009)
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Alternative representation :

X = (ABC) + 2, (KyLiMy)+G,
d

(A,B,C) :  CP part of nondiverging components
(KyLyMp) Gy ¢ Tucker3 limit of m diverging comp.
1 0 0|0 1 O]
01 0/0 0 1

for m=3

Stegeman & De Lathauwer (2009)
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Proposal for /xJxK with R < min(/JK)

(I) First try CP algorithm. If diverging components occur:

(II) Write each group of m div. comp. as (S;T4U.)*H,
with (S,T;U,) orthonormal columns and H,
(mxmxm) upper triangular slices

(IITI) Using (S4T,U,)+H, as initial values, fit model:

Z= Z (KgloMy)+Gys + E
q

with G, in canonical form (using Tucker3 ALS)
Stegeman (2010)
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Step (II)

Let Y = (A,B,C) form a group of m diverging comp.

A =SR, QR-decomp: S'S =1, , R, upper triangular
B=TL, QL-decomp: T'T=1,, L, lower triangular

2> Y, =SR,CLNT slice k

We can find U such that U'U =1I,, and

Y=(STU-+H with H (mxmxm)
upper triangular slices
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Step (III)

Assume Y = (A,B,C) —— boundary point X of S,
m diverging comp. and X & S5,

Form=2: X=(KLM)-G with K,LLM of rank 2

G=|0 1/0 0| with rank(G) =3

De Silva & Lim (2008)
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For m=3 :

[9)
I

1
0
0

oS = O

0
0
1

o O O

S O O

S M O

o O O

o O O

-
0
O_

X=(KLM-G with KLM of rank 3

with rank(G) =5

For nondiverging components (m=1), wetake G =1

Stegeman (2010), Paatero (2000) for case 0=0, =1
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X = Z (KaLsyMp) -Gy
q

sets {K,+ {L; {M, all haverank R

m=3 at most once, max(m)=2

U

X is boundary point of Sz

rank(X) = Z rank(G,) > R
d

Ja’ Ja’ & Takche (1986), Stegeman (2010)
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Numerical Example 1: 5xX5xX5 and R=3

CP ALS with tolerance 1e-9 terminates after 11.100 iters
Y = (A,B,C) has 2 diverging components

ssq(Z—-Y) = 61.971147

fitmodel Z = (kil;,m) + (K,,L,,M,)-G, + E

ssq(Z — X) = 61.970457, tolerance 1le-12, 38 iters

condition numbers of [k; K], [li Lo], [m; M,] are:
5.66 1.62 /.18
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Numerical Example 2: 3x3x3 and R=3

CP ALS with tolerance 1e-9 terminates after 20.913 iters
Y = (A,B,C) has 3 diverging components

ssq(Z—-Y) = 0.779692

fit model Z2 = (K, L{M,):G; + E

ssq(Z — X) = 0.779379, tolerance 1e-12, 98 iters

condition numbers of K;, L;, M; are: 98.5, 1.1, 43.3
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Concluding Remarks

e For /xJxK and R=2 a Tucker3 model exists that
equals closure of 5, Rocci & Giordani (2010)

e For /xJx2 and for R=2, much faster algorithms exist
than any CP algorithm !

e Harshman (2004) has been confirmed:
diverging components are due to

“Parafac trying to model Tucker variation”
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o for IxJx2 and IxJxK: rank(X) = # rank-1 terms

if max(m)<2

e Uniqueness of decomposition of X :

for IxJx2 :

for IxJxK:

unigueness given Jordan form decomp.

not unigue in rank-1 terms within blocks

uniqgueness given block decomp. form
(proven for max(m)<2)

not unique in rank-1 terms within blocks
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Post-doc vacancy

2 years full-time, starting 2010 or 2011

University of Groningen, The Netherlands

unigueness or existence of tensor decompositions

required: PhD in relevant field
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