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Candecomp / Parafac (CP)  model 
 
Z  =  a1 " b1 " c1  +  …  +  aR " bR " cR  +  E 

 
Zk = A  Ck  B

T + Ek     frontal slice k 
Ck = diag(row k  of C) 
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rank(Z) = min {R :  Z  =  a1"b1"c1 + … + aR "bR "cR }  
 
rank(a"b"c) = 1 
 
 
 
Computation of CP solution   
 
minimize  ssq(E)  over  (A,B,C) 
 
optimal  X = (A,B,C)  is a best rank-R  approximation of Z 
 
computation  (A,B,C)  by iterative algorithm 
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The Candecomp / Parafac  problem 
 
 

Minimize   ssq(Z – Y) 

            over  SR = { Y  with rank ≤ R } 

      

�  if  Z – SR , then an optimal solution X  (if it exists)  
will be a boundary point of SR   

 
But:  the set SR  is not closed for R ≥ 2 

 

Bini et al. (1979), Paatero (2000), Lim (2004)  
De Silva & Lim (2008) 
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A  misleading  picture 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

set SR 
 

rank ≤ R 

•  Z 
  X 

CP updates Y 

rank >R 
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Suppose  Y = (A,B,C)         optimal X  and  X – SR 
 
 

Then, some rank-1 terms  ar"br"cr  converge to 

linear dependency  and  infinite norm 

 
� diverging components  (“degeneracy”) 
 
 
In practice also:   slow convergence of CP algorithm  

(“swamp”) 
 
 

Kruskal et al. (1989), Krijnen et al. (2008) 
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Two diverging components 
 
 
Y(s) = as " bs " cs   Y(t) = at " bt " ct  

 
 
 
 
 
 
 
 
 
Y(s) +  Y(t)  remains “small” and contributes to  

a better CP fit 

Vec(Y(t)) 

Vec(Y(s)) 
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Three diverging components 
 
 
 
 
 
 
 
 
 
 
 

 
Y(s) +  Y(t) +  Y(u)  remains “small” and contributes  

to a better CP fit 

Vec(Y(t)) 

Vec(Y(s)) 

Vec(Y(u)) 
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Example:  3×3×2  with  R = 3 
 

 
 
 
 
 
 
 
 
 
 

Y(1)   ≈   Y(2)   ≈  – (1/2)  Y(3)   
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How often do diverging components occur ? 

 
* any Z ; proven by De Silva & Lim (2008) 
+
 random Z ; conjectured/partial proof by Stegeman (2008) 

   see Stegeman (2007) for several I×J×3 cases 

array  Z   rank(Z) R 
diverging 

components? 

2×2×2 3 R = 2 always * 

I×I×2 I+1 R = I always + 

I×I×2 I  or I+1 R < I sometimes + 

I×J×2, I>J min(I, 2J ) R ≤ J sometimes + 
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Some remarks 
 
1. If the CP problem does not have an optimal solution, 

then any CP algorithm trying to minimize ssq(Z – Y) 

will terminate with diverging components.       

(Krijnen et al., 2008) 

 

2. We do not consider cases of diverging components 

where an optimal CP solution exists, but the CP 

algorithm gets slow or stuck near the boundary. 

 (Mitchell & Burdick, 1994; Paatero, 2000; Stegeman, 2009) 
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How to avoid diverging components (1) 
 
 
�  make sure CP has an optimal solution 
 
 
By imposing restrictions in CP: 
 

•  A, B or C is restricted to have orthogonal columns         
   (Krijnen et al., 2008) 
 
•  Z is nonnegative and A, B and C are restricted to   
   be nonnegative (Lim, 2005; Lim & Comon, 2009) 
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How to avoid diverging components (2) 
 
 
�  change the CP problem into:    (De Silva & Lim, 2008) 
 

Minimize   ssq(Z – Y) 

        over  closure of SR  
 

 

What is needed? 
 
� Complete characterization of boundary points 

�  Algorithm to find an optimal boundary point 
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Tucker3 model  and  block decomposition 

 

Z =
 
∑∑∑

= = =

R

r

P

p

Q

q1 1 1

grpq  ( ar " bp " cq )  +  E
 

Z = (A,B,C)٠G  +  E  with  G :  R×P×Q  core array 

(Tucker, 1966) 

 

Z =
 
∑

d

(Ad,Bd,Cd)٠Gd
   
decomposition in block terms

 

(De Lathauwer, 2008) 
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I×J×2  with  R ≤ min(I,J ) 
 
 
Y  in closure of SR  satisfies  Y = (S,T,I2)٠H 

with  STS = TTT = IR  and 

H (R×R×2) in closure of SR´
 

 
rank(Y) = rank(H) 
 

Y  boundary point of SR   ñ H  boundary point of SR´ 
 
 

De Silva & Lim (2008) 
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Classification of  R×R×2  arrays  w.r.t. SR´  
 

H = [H1 | H2]   with nonsingular  H1  
 
 

Interior of SR´ : H2(H1)
-1 has R  real distinct eigenvalues 

 
Boundary  SR´ : H2(H1)

-1 has R  real eigenvalues, not all  
distinct 

 
      rank(H) = R   if  H2(H1)

-1 diagonalizable 

rank(H) > R   if  H2(H1)
-1 not diag. 

 
Exterior of SR´ : H2(H1)

-1 has some complex eigenvalues 
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H = [H1 | H2]   with singular  H1  
 

G = (IR,IR,U)٠H  with some  U  (2×2)  nonsingular 
 
 

•  Interior / boundary / exterior  same  for  G  and  H 
 

•  If  G1  nonsingular, then classification as above 
 

•  If  G1  singular for all U, then boundary point 
 
 
 
 

Ja’ Ja’ (1979), Ten Berge (1991), Ten Berge & Kiers (1999) 
Stegeman (2006,2010) 
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Generalized Schur Decomposition  (I×J×2) 

 

Zk = Qa Rk Qb
T + Ek    slice k = 1,2 

 
with  Qa

TQa = Qb
TQb = IR   ,   Rk  (R×R)  upper triangular  

 
Z = (Qa,Qb,I2)٠R  +  E  with  R = [R1 | R2] 
 
 
closure of  SR  equals   { Y :  Y = (Qa,Qb,I2)٠R } 
 
 
 

Stegeman & De Lathauwer (2009), Stegeman (2010) 
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•  Jacobi-type algorithm fits GSD to  Z  (fast!) and  

obtains optimal solution  X  with GSD  (Qa,Qb,R1,R2) 

 
•  Jordan form  R2(R1)

-1 = P J P-1  gives  decomp. of  X   

 

X1 = Qa R1 Qb
T = (Qa P)  IR  (P

-1 R1 Qb
T)  

X2 = Qa R2 Qb
T = (Qa P)  J   (P

-1 R1 Qb
T)  

 

1×1    Jordan block  ñ nondiverging component 

m×m  Jordan block  ñ limit of m  diverging comp. 
 
 

Stegeman & De Lathauwer (2009) 
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Alternative representation : 
 

X  =  (A,B,C)  +
 
∑

d

(Kd,Ld,Md)٠Gd
 

 

(A,B,C)     : CP part of nondiverging components 

(Kd,Ld,Md)٠Gd  : Tucker3 limit of m  diverging comp. 

  with  Gd  (m×m×2)  =  










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100

010

100

010

001

    for m=3 

 
 Stegeman & De Lathauwer (2009) 
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 Proposal for  I×J×K  with  R ≤ min(I,J,K ) 
 
 

(I)  First try CP algorithm. If diverging components occur: 
 
(II)  Write each group of m  div. comp. as  (Sd,Td,Ud)٠Hd    
   with  (Sd,Td,Ud)  orthonormal columns and  Hd      
   (m×m×m)  upper triangular slices 

 
(III)  Using  (Sd,Td,Ud)٠Hd  as initial values, fit model: 

Z =
 
∑

d

(Kd,Ld,Md)٠Gd  +  E       

    with  Gd  in canonical form  (using Tucker3 ALS) 

Stegeman (2010) 
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Step (II) 
 
Let  Y = (A,B,C)  form a group of m  diverging comp. 
 
A = S Ra QR-decomp:  STS = Im  , Ra  upper triangular 
B = T Lb QL-decomp:   TTT = Im  , Lb  lower triangular 
 
����  Yk  =  S (Ra Ck Lb

T) TT  slice k 
 
 
We can find  U  such that  UTU = Im  and 
 

Y = (S,T,U)٠H   with  H  (m×m×m)   
upper triangular slices 
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Step (III) 
 
 Assume  Y = (A,B,C)             boundary point  X  of Sm 

  m  diverging comp.         and  X – Sm   
 
 
For m=2 :     X = (K,L,M)٠G    with  K,L,M  of rank 2 
 

  G = 








00

10

10

01

   with   rank(G) = 3 

 
 
 

De Silva & Lim (2008) 
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For m=3 :     X = (K,L,M)٠G    with  K,L,M  of rank 3 
 

G = 















000

000

100

000

00

00

100

010

001

ε

δ

 with  rank(G) = 5 

 
 
 
For nondiverging components (m=1), we take  G = 1 
 
 

 
 

Stegeman (2010), Paatero (2000) for case δ=0, ε=1
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X =
 
∑

d

(Kd,Ld,Md)٠Gd
 

sets  {Kd}  {Ld}  {Md}  all have rank R 

m≥3  at most once,   max(m)≥2 

‡ 
X  is boundary point of SR 

rank(X)  =
  
∑

d

rank(Gd) > R
 

 

Ja’ Ja’ & Takche (1986), Stegeman (2010) 
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Numerical Example 1:  5×5×5  and  R=3 
 
 

CP ALS with tolerance  1e-9  terminates after 11.100 iters 
 
Y = (A,B,C)  has 2 diverging components 
 
ssq(Z – Y) = 61.971147 
 
fit model   Z  =  (k1,l1,m1)  +  (K2,L2,M2)٠G2  +  E    
 
ssq(Z – X) = 61.970457,   tolerance  1e-12,  38 iters 
 
condition numbers of  [k1 K2],  [l1 L2],  [m1 M2]  are: 

5.66  1.62  7.18 
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Numerical Example 2:  3×3×3  and  R=3 
 
 
CP ALS with tolerance  1e-9  terminates after 20.913 iters 
 
Y = (A,B,C)  has 3 diverging components 
 
ssq(Z – Y) = 0.779692 
 
fit model   Z  =  (K1,L1,M1)٠G1  +  E

      
 

 
ssq(Z – X) = 0.779379,   tolerance  1e-12,  98 iters 
 
condition numbers of  K1, L1, M1  are:  98.5,  1.1,  43.3 
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Concluding Remarks 
 
 
  ●  For I×J×K  and R=2  a Tucker3 model exists that  

equals closure of S2    Rocci & Giordani (2010) 
 
 
●  For I×J×2 and for R=2, much faster algorithms exist  

than any CP algorithm ! 
 
 
●  Harshman (2004) has been confirmed:  

diverging components are due to  

“Parafac trying to model Tucker variation” 
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  ●  for I×J×2  and I×J×K :   rank(X) = # rank-1 terms   

if  max(m)≤2   

 

  ●  Uniqueness of decomposition of  X : 
 
for I×J×2 :  uniqueness given Jordan form decomp. 

     not unique in rank-1 terms within blocks 

 
for I×J×K :  uniqueness given block decomp. form 

     (proven for  max(m)≤2) 

not unique in rank-1 terms within blocks 
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Post-doc  vacancy 

 

2 years full-time,  starting  2010  or  2011 

 

University of Groningen, The Netherlands 

 

uniqueness  or  existence  of  tensor  decompositions 

 

required:  PhD  in  relevant  field 
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