

Direct-Fitting Common Factor Analysis

Alwin Stegeman

a.w.stegeman@rug.nl
www.gmw.rug.nl/~stegeman

VOC meeting 2015

university of
groningen

faculty of behavioural
and social sciences

Direct-Fitting Common Factor Analysis

- ① The Common Factor Model
- ② Factor Indeterminacy
- ③ Direct-Fitting Common Factor Analysis
- ④ Application
- ⑤ Conclusion

The Common Factor Model - formally

$$X_j = \sum_{r=1}^R \lambda_{jr} F_r + u_j E_j, \quad j = 1, \dots, J$$

X_j is observed variable j , F_r is common factor r , E_j is unique part j

λ_{jr} is loading of variable j on factor r , u_j is unique std j

$$\phi_{rs} = \text{Corr}(F_r, F_s)$$

Assumptions: X_j , F_r and E_j are standardized

$$\text{Corr}(E_j, F_r) = 0, \quad \text{all } j, r$$

$$\text{Corr}(E_j, E_k) = 0, \quad j \neq k$$

$$\text{Corr}(X_j, F_r) = \lambda_{jr} + \sum_{s \neq r} \lambda_{js} \phi_{rs}$$

The Common Factor Model - models

$$X_j = \sum_{r=1}^R \lambda_{jr} F_r + u_j E_j, \quad j = 1, \dots, J$$

Random Factor Model: F_r , E_j are random variables, λ_{jr} , u_j , ϕ_{rs} are fixed

Fixed Factor Model: E_j are random variables, F_r , λ_{jr} , u_j , ϕ_{rs} are fixed

Data Model: all of F_r , E_j , λ_{jr} , u_j , and ϕ_{rs} are fixed

Only fixed parameters are estimated

The Common Factor Model - estimation

$$X_j = \sum_{r=1}^R \lambda_{jr} F_r + u_j E_j, \quad j = 1, \dots, J$$

Random Factor Model: fit $\text{Corr}(\mathbf{X}) \approx \boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{\Lambda}^T + \mathbf{U}^2$, use:

MINRES (Harman & Jones, 1966), MLFA (Jöreskog, 1967), MRFA (Ten Berge & Kiers, 1991), ...

Fixed Factor Model: fit to observed data \mathbf{X} , use:

ML-ratio (McDonald, 1979), or first estimate random factor model and then 'estimate' factor scores as $\widehat{\mathbf{F}} = \mathbf{X} \mathbf{B}$ for some weights \mathbf{B} (Grice, 2001)

Data Model: fit to observed data \mathbf{X} (a.k.a. direct-fitting), use:

alternating LS (Kiers in Sočan, 2003; De Leeuw, 2004; Unkel & Trendafilov, 2010), DF-MRFA (Stegeman & Kiers, 2014), ...

Factor Indeterminacy

Data Model formulation: $\mathbf{X} = \mathbf{F} \Lambda^T + \mathbf{E} \mathbf{U},$

with \mathbf{X} ($N \times J$), \mathbf{F} ($N \times R$), Λ ($J \times R$), \mathbf{E} ($N \times J$), and \mathbf{U} diagonal ($J \times J$).

Assumptions: $N^{-1} \mathbf{E}^T \mathbf{F} = \mathbf{O}$, $N^{-1} \mathbf{E}^T \mathbf{E} = \mathbf{I}_J$, $N^{-1} \mathbf{F}^T \mathbf{F} = \Phi$.

Factor scores \mathbf{F} and unique part \mathbf{E} are **not uniquely determined!**

$\mathbf{F}, \mathbf{E} = \text{determinate part} + \text{indeterminate part}$
 $= \text{regression on } \mathbf{X} + \text{residual}$

(regressions are $\mathbf{X} \mathbf{S}^{-1} \Lambda \Phi$ and $\mathbf{X} \mathbf{S}^{-1} \mathbf{U}$, with $\mathbf{S} = \text{Corr}(\mathbf{X})$)

Indeterminate parts of \mathbf{F} and \mathbf{E} are linked such that the assumptions hold.

Wilson (1928), Guttman (1955)

Factor Indeterminacy - minimal correlation

For two factors \mathbf{f}_r and $\tilde{\mathbf{f}}_r$ with the same determinate part but different indeterminate parts, we have a minimal correlation

$$\text{Corr}(\mathbf{f}_r, \tilde{\mathbf{f}}_r) \geq 2R_r^2 - 1,$$

with $R_r^2 = (\boldsymbol{\Phi} \boldsymbol{\Lambda}^T \mathbf{S}^{-1} \boldsymbol{\Lambda} \boldsymbol{\Phi})_{rr}$ of the regression of \mathbf{f}_r on \mathbf{X} (Guttman, 1955).

Factors are interpreted via $\text{Corr}(\mathbf{X}, \mathbf{F}) = \boldsymbol{\Lambda} \boldsymbol{\Phi}$, but what if the minimal correlation is very small or negative? (Guttman, 1955)

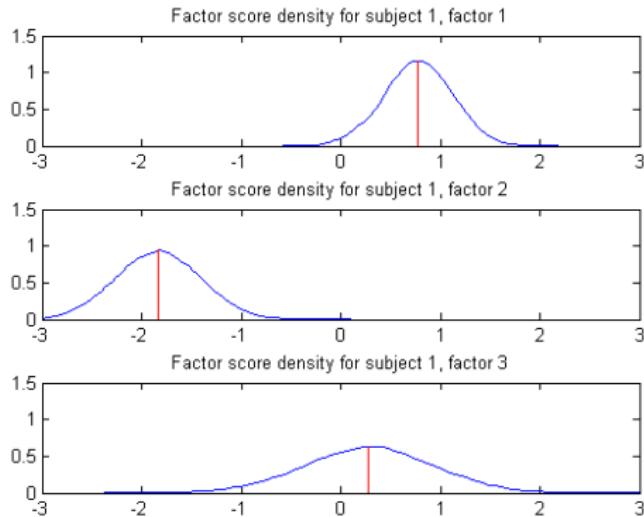
Minimal correlations should be reported when using Common Factor Analysis, or factor score std due to indeterminacy $\sqrt{1 - R_r^2}$.

Guttman (1955), Grice (2001)

Factor Indeterminacy - factor score probability densities

Factor score densities (subject 1) for noise-free data and $N = 100$.

Based on simulating 10.000 realisations of indeterminate part, which contains a random matrix.



mean	std	min corr
0.78	0.34	0.77
-1.83	0.42	0.65
0.28	0.64	0.16

Mean = determinate part. Larger std for smaller minimal correlation.

Direct-Fitting Common Factor Analysis - models

Fitting the Data Model:

$$\text{DF-MINRES: } \mathbf{X} = \underbrace{\mathbf{F} \boldsymbol{\Lambda}^T}_{\text{common part}} + \underbrace{\mathbf{E} \mathbf{U}}_{\text{unique part}} + \text{residual}$$
$$\text{DF-MRFA: } \mathbf{X} = (\mathbf{F} \boldsymbol{\Lambda}^T + \text{residual}) + \mathbf{E} \mathbf{U}$$

Minimize $\text{ssq}(\text{residual})$ under constraints:

$$N^{-1} \mathbf{E}^T \mathbf{F} = \mathbf{O}, \quad N^{-1} \mathbf{E}^T \mathbf{E} = \mathbf{I}_J, \quad N^{-1} \mathbf{F}^T \mathbf{F} = \mathbf{I}_R$$

\mathbf{F} and \mathbf{E} have mean-zero columns

$$N^{-1} \mathbf{E}^T (\text{common part}) = \mathbf{O}$$

Direct-Fitting Common Factor Analysis - estimation

- DF-MINRES can be fitted by alternating LS, where each of $[\hat{\mathbf{F}} \hat{\mathbf{E}}]$, $\hat{\Lambda}$, and $\hat{\mathbf{U}}$ is updated while keeping the others fixed (Kiers in Sočan, 2003; De Leeuw, 2004; Unkel & Trendafilov, 2010).
- DF-MRFA algorithm first computes $\hat{\mathbf{U}}$ such that $\text{ssq}(\text{residual})$ is minimized (Ten Berge & Kiers, 1991). Next, $\hat{\mathbf{E}}$ is computed, and $\hat{\mathbf{F}}\hat{\Lambda}^T$ is a best rank- R approximation of $(\mathbf{X} - \hat{\mathbf{E}}\hat{\mathbf{U}})$ (Stegeman & Kiers, 2014).
- DF-MINRES and DF-MRFA: factor indeterminacy occurs in $\hat{\mathbf{F}}$ and $\hat{\mathbf{E}}$, but does not affect $\hat{\Lambda}$ and $\hat{\mathbf{U}}$.
- DF-MRFA: proportion of explained common variance can be computed as $\text{ssq}(\hat{\mathbf{F}}\hat{\Lambda}^T)/\text{ssq}(\hat{\mathbf{F}}\hat{\Lambda}^T + \text{residual}) = \text{trace}(\hat{\Lambda}\hat{\Lambda}^T)/\text{trace}(\mathbf{S} - \hat{\mathbf{U}}^2)$.

Direct-Fitting Common Factor Analysis - indeterminacy

- DF-MINRES and DF-MRFA: minimal correlation expressions of Guttman (1955) are valid, and also factor score due to indeterminacy.
- DF-MINRES and DF-MRFA: closed form expression for indeterminate part of $\hat{\mathbf{F}}$ contains a random matrix, which makes it possible to sample it and obtain probability densities for factor scores due to indeterminacy (under imperfect fit).

Stegeman & Kiers (2014)

Application - WISC-III

Wechsler Intelligence Scale for Children, 3rd edition (Wechsler, 1991).

$N = 280$, $J = 12$ subtests, $R = 4$ factors, Varimax rotation (Grice, 2001).

We use DF-MRFA and apply Varimax rotation to $\widehat{\Lambda}$. Results are close to Grice (2001). Model fit is 95.7% and total ECV is 92.5%.

Factor score stds below are due to indeterminacy.

factor	ECV%	min corr	std
1	34.8	0.64	0.42
2	26.7	0.55	0.47
3	20.8	0.48	0.51
4	10.2	0.05	0.69

Application - WISC-III

subtest		Λ		U²	ECV%	
Picture Completion	0.26	0.62	0.16	0.03	0.48	91.7
Information	0.75	0.13	0.09	0.14	0.32	90.1
Coding	-0.02	0.15	0.67	0.08	0.48	92.0
Similarities	0.71	0.20	0.01	-0.00	0.42	93.9
Picture Arrangement	0.27	0.43	0.44	0.01	0.47	84.6
Arithmetic	0.32	0.04	0.30	0.52	0.48	88.2
Block Design	0.22	0.72	0.24	0.22	0.30	97.1
Vocabulary	0.79	0.21	0.10	0.07	0.32	99.2
Object Assembly	0.13	0.76	0.08	-0.09	0.35	93.9
Comprehension	0.61	0.14	0.14	0.24	0.50	93.7
Symbol Search	0.14	0.19	0.77	0.04	0.31	93.5
Digit Span	0.16	0.08	-0.04	0.55	0.62	87.8

Concluding Remarks

- Whichever factor model is used, some measure of factor indeterminacy should be reported for each factor.
- Factor indeterminacy is a controversial issue (“stop using the factor model” versus “assume infinitely many items measuring F , then the factor scores are unique in the limit”). (Steiger, 1979; Maraun, 1996; Mulaik, 2010).
- Factor score std values or probability densities due to indeterminacy are easier to grasp than minimal correlations (and less pessimistic).
- For $(\widehat{\Lambda}, \widehat{\mathbf{U}})$ obtained from the random factor model, we can find all $(\widehat{\mathbf{F}}, \widehat{\mathbf{E}})$ with minimal $\text{ssq}(\text{residual})$ in DF-MINRES. Also, factor score std values due to factor indeterminacy can be simulated.
- DF-MRFA includes explained common variances and has estimation accuracy comparable to DF-MINRES and MINRES in simulations.

References

- De Leeuw, J. (2004). Least squares optimal scaling of partially observed linear systems. In: *Recent Developments on Structural Equation Models: Theory and Applications*, Eds. K. van Montfort, J. Oud & A. Satorra, pp. 121-134. Dordrecht: Kluwer Academic Publishers.
- Grice, J.W. (2001). Computing and evaluating factor scores. *Psychological Methods*, 6, 430-450.
- Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common factor theory. *The British Journal of Statistical Psychology*, 8, 65-81.
- Harman, H.H., & Jones, W.H. (1966). Factor analysis by minimizing residuals (MINRES). *Psychometrika*, 31, 351-368.
- Jöreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. *Psychometrika*, 32, 443-482.
- Maraun, M.D. (1996). Metaphor taken as math: indeterminacy in the factor analysis model. With comments and reply. *Multivariate Behavioral Research*, 31, 517-689.
- McDonald, R.P. (1979). The simultaneous estimation of factor loadings and scores. *British Journal of Mathematical and Statistical Psychology*, 32, 212-228.
- Mulaik, S.A. (2010). *Foundations of Factor Analysis*, 2nd edition. Chapman & Hall, FL, USA.

References

- Sočan, G. (2003). *The Incremental Value of Minimum Rank Factor Analysis*. PhD Thesis, University of Groningen, The Netherlands.
- Steiger, J.H. (1979). Factor indeterminacy in the 1930s and the 1970s, some interesting parallels. *Psychometrika*, 44, 157–167.
- Stegeman, A., & Kiers, H.A.L. (2014). Direct-fitting common factor analysis. Submitted.
- Ten Berge, J.M.F., & Kiers, H.A.L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. *Psychometrika*, 56, 309–315.
- Unkel, S., & Trendafilov, N.T. (2010). Simultaneous parameter estimation in exploratory factor analysis: an expository review. *International Statistical Review*, 78, 363-382.
- Wechsler, D. (1991). *WISC-III manual*. San Antonio, TX: Psychological Corporation.
- Wilson, E. (1928). On hierarchical correlation systems. *Proceedings of the National Academy of Sciences*, 14, 283–291.