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Introduction 

We consider a real-valued 4×3×3 array of which the elements are drawn from a 36-

dimensional continuous distribution P. We assume that P(A) = 0 if and only if L(A) = 0, 

where L denotes the Lebesgue measure and A is an arbitrary Borel set in 36ℜ . The three 

4×3 slices of the array are denoted by X, Y and Z. We know that, with probability 1, the 

three-way rank of the array is either 5 or 6; see Ten Berge and Stegeman (2004, Table 2). 

Here, we will show that rank 5 occurs with positive probability. It is not yet known 

whether rank 6 occurs with positive probability or not. 

 Our result is obtained by showing that all arrays randomly sampled from a small 

36-dimensional environment of a particular 4×3×3 array, have a full rank-5 

decomposition. Let X, Y and Z be randomly sampled as explained above. Ten Berge and 

Kiers (1999) have shown that, with probability 1, there exist nonsingular matrices S and 

T such that 
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where the last slice can be treated as randomly sampled from a 12-dimensional 

continuous distribution. Hence, without loss of generality we may assume that the array 

is of the form as in (1), i.e.  
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Moreover, since all arrays randomly sampled from a small 36-dimensional environment 

of (X,Y,Z) can be transformed to the form (1), we only need to show that a full rank-5 

decomposition exists for X and Y as in (2) and a small 12-dimensional environment of a 

particular Z. For this, we will take 

 



 3 

Z = 
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Construction of a rank-5 decomposition 

We start with the array in (2) and show how a rank-5 decomposition can be obtained. 

This is done by adding a fifth row to the slices in (2) and using the approach of Ten 

Berge (2004) to find a rank-5 decomposition of a 5×3×3 array. We denote our 5×3×3 

array by 
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where we may choose the values of x = (x1, x2, x3)´, y = (y1, y2, y3)´ and z = (z1, z2, z3)´. 

Let f = (f1, f2, f3, f4)´, g = (g1, g2, g3, g4)´ and h = (h1, h2, h3, h4)´. It can be seen that we 

may set 03321 ==== yxxx  without loss of generality. Indeed, subtracting from the 

fifth row in each slice 1x  times the first row, 2x  times the second row, 3x  times the third 

row and 3y  times the fourth row yields an array with the same rank as (4). Somewhat 

abusing the notation, the remaining elements on the fifth row will be denoted as               

y = (y1, y2)´ and z = (z1, z2, z3)´. Hence, we consider the following array: 
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The following rank-5 decomposition of (5) will be derived: 

X
~

 = A I5 B´,  Y
~

 = A C B´,  Z
~

 = A D B´,   (6) 
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with A (5×5), B (3×5) and C and D diagonal matrices. If the fifth row of A is deleted, a 

rank-5 decomposition of the 4×3×3 array in (2) is the result.  

 Next, we show how to derive the component matrices A, B, C and D. We assume 

that A is nonsingular. It can be seen that OXDAZAYAXCA =−=− −−−− ~~~~ 1111 . Hence, 

the j-th row ja′  of 1−A  should satisfy 0XZaYXa ′=−′=−′ )
~~

()
~~

( jjjj dc , where jc  and jd  

are the diagonal elements of C and D, respectively. Set the first element of ja  to 1. From 
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for some scalar jβ . It remains to satisfy 0XZa ′=−′ )
~~

( jj d , i.e. ja  has to be orthogonal to 

the three columns of XZ
~~
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where the expressions for the elements of jW  are given in the Appendix. For the vector 
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this by choosing jc  and jd  such that  
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but not 0)(),( )2()1( == jjj cFdcF . The first determinant in (9) equals 

)()()( 2
0302011211
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3
3 jjjjjjj dedeecdeecdeece +++++++  ,  (10) 

where the coefficients ek depend on f, g, h, y and z. The expressions for ek are given in 

the Appendix. The second determinant in (9) equals 
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)~~~()~~~()~~(~ 2
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where the coefficients ke~  depend on f, g, h, y and z. The expressions for ke~  are given in 

the Appendix. The following lemma specifies the solutions ),( jj dc  for which 

0)(),( )2()1( == jjj cFdcF .  

 

Lemma 1:  The expression 0)(),( )2()1( == jjj cFdcF  is equivalent to: 

0)()()( 122312413
2

14 =−−++−− yfyfzcyfyfcyf jj ,  (12) 
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4 fcfcfcfd jjjj +++= .    (13) 

Proof.  It can be seen (see Appendix) that (12) is equivalent to 0)()2( =jcF  and (13) is 

equivalent to 0),()1( =jj dcF . This completes the proof.              □ 

 

Next, we determine ),( jj dc  which satisfy both (10) and (11). We set 01 =y . Then 

0~
1303 == ee  (see Appendix) and jd  can be determined from (10) as 
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Substituting (12) into (11) yields that jc  can be found as a root of a 7-th degree 

polynomial. We denote this polynomial by  

01
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7)( qcqcqcqcqcqcqcqcQ +++++++= .  (13) 

The coefficients qk depend only on f, g, h, y and z. Their expressions are given in the 

Appendix. Since we need five solutions for jc , the polynomial Q must have at least five 

real roots. Because 01 =y , there is only one solution ),( jj dc  for which 

0)(),( )2()1( == jjj cFdcF  (see Lemma 1). The jc  of this flawed solution is also a root 

of Q. Therefore, Q must have seven real roots. One root is discarded and five out of the 

six remaining roots are used as jc . This is again the partial uniqueness result obtained by 

Ten Berge (2004). Once the jc  and jd  are  known, the scalars jβ  can be chosen as 
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)(/),( )2()1(
jjj cFdcF− . Then 1−A  follows from (7) and B can be determined from 

XAB
~1−=′ .  

 Hence, for given vectors f, g, h, the problem is to choose y and z (under the 

restriction 01 =y ) such that the polynomial Q in (13) has seven real roots.  

 

 

Rank 5 occurs with positive probability 

We have applied the procedure above to the 4×3×3 array in (2) with Z as in (3). For 
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the polynomial Q has the following seven real roots:  -9.85, -1.46, -0.86, -0.69, -0.68, 

0.31 and 3.46. From Lemma 1 it follows that the flawed solution for jc  is given by 

86.0
24

231 −=
−

=
yf

yfz
c j .     (15) 

Hence, six real roots of Q remain and a rank-5 decomposition can be constructed as 

above.  

 Next, we show that a full rank-5 decomposition is also possible in a small 

environment of Z, where y and z remain the same. Define 

} roots realseven  has:),,,{( 7108 QqqqS K= .    (16) 

Since Q has a unique set of seven roots (for 07 ≠q ), we may write 

))()()()()()(()( 7654321 ccccccccQ −−−−−−−= λλλλλλλα ,  (17) 

where α  is a scaling parameter and iλ  are the roots of Q. By equating (13) and (17), it 

can be verified that there exists a continuous mapping from ),,,,( 721 λλλα K  to 

),,,( 710 qqq K . Moreover, since Q has a unique set of seven roots (for 07 ≠q ), this 

mapping is one-to-one up to a permutation of ),,,( 721 λλλ K . This implies that the set 8S  

has positive 8-dimensional volume. The boundary points of 8S  are those ),,,( 710 qqq K  

for which Q has at least two identical real roots. Then an aribitrary close approximation 

by a polynomial with one pair of complex roots is possible, where the imaginary parts of 
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the complex roots are close to zero. Hence, 8S  is a closed set. If Q has seven distinct real 

roots for ),,,( 710 qqq K , then ),,,( 710 qqq K  is an interior point of the set 8S , and within 

a small environment of ),,,( 710 qqq K  the polynomial Q also has seven real roots. Since 

the coefficients ),,,( 710 qqq K  are continuous functions of f, g and h, it follows that in a 

small environment of Z in (3), with y and z as in (14), the polynomial Q will still have 

seven real roots. Therefore, a full rank-5 decomposition is possible in a small 

environment of Z. This shows that for real-valued 4×3×3 arrays of which the elements 

are randomly sampled from a continuous distribution, rank 5 occurs with positive 

probability. 
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Appendix 

The expressions for the elements of the matrix jW  in (8) are as follows: 

)(),( 12
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3
3

4
)1( dfcfcfcfdcF −+++= , 
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3
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)1( )(),( gcdgcgcgdcG +−++= , 
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)1( )(),( hchcdhchdcH ++−+= , 

)()()()( 122312413
2

14
)2( yfyfzcyfyfcyfcF −−++−−= , 

])([)()(),( 122322413
2

14
)2( ydgygzcygygcygdcG −−−++−−= , 
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])([])[()(),( 122332413
2

14
)2( yhydhzcyhydhcyhdcH −−−++−−−= .    

 

The expressions for the coefficients ek in (10) are as follows: 

)( 14243 zgzfe −= , 

2424214141132321 )()()( yfggfyfggfzgzfe −−−−−= , 

241422 yfyge −= , 

241411313122323122211 )()()()( yfggfyfggfyfggfzgzfe −−−−−+−= , 

2131311212112101 )()()( yfggfyfggfzgzfe −+−+−= , 

22312102 )( zygygfe −++= , 

103 ye −= . 

 

 

 

The expressions for the coefficients ke~  in (11) are as follows: 

)(~
14343 zhzfe −= , 

2424214141133321 )()()(~ yfhhfyfhhfzhzfe −−−−−= , 

14122
~ yhze += , 

241411313122323123211 )()()()(~ yfhhfyfhhfyfhhfzhzfe −−−−−+−= , 

24213112 )()(~ yhfyhfe +++= , 

113
~ ye −= , 

2131311212113101 )()()(~ yfhhfyfhhfzhzfe −+−+−= , 

32311202 )(~ zyhfyhe −++= , 

203
~ ye −= . 
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The expressions for the coefficients qk in (13) are as follows: 

22322
2
2237

~~ eeeeeq −= , 

2
30322312222112322

2
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~~)(~~~2 eeeeeeeeeeeeeeeq +−+−+= , 
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     3210322302222112312
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12022221021234

~2)(~)2(~~2 eeeeeeeeeeeeeeeeeq +++−++=  
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   )2(~2)(~~2 2111301032211122102302122201 eeeeeeeeeeeeeee ++++−+ , 

)2(~)(~~2~~ 2
120222011201021112021211020122

2
02212 eeeeeeeeeeeeeeeeeq +++−+−=    

     )2(~)(~ 2
1121010322011211022102 eeeeeeeeeee ++++− , 

1101031201021102021201020112
2
02111

~2)(~~2~~ eeeeeeeeeeeeeeeeq ++−+−= , 

2
0103020102

2
02010

~~~ eeeeeeeq +−= . 


