Real-valued 4x3x3 arrays have rank 5 with positive probability
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Introduction
We consider a real-valued 4x3x3 array of which the elements are drawn from a 36-
dimensiona continuous distribution P. We assume that P(A) = 0 if and only if L(A) = 0,

where L denotes the Lebesgue measure and A is an arbitrary Borel set in 0% . The three
4x3 dlices of the array are denoted by X, Y and Z. We know that, with probability 1, the
three-way rank of the array is either 5 or 6; see Ten Berge and Stegeman (2004, Table 2).
Here, we will show that rank 5 occurs with positive probability. It is not yet known
whether rank 6 occurs with positive probability or not.

Our result is obtained by showing that all arrays randomly sampled from a small
36-dimensional environment of a particular 4x3x3 array, have a full rank-5
decomposition. Let X, Y and Z be randomly sampled as explained above. Ten Berge and
Kiers (1999) have shown that, with probability 1, there exist nonsingular matrices S and
T such that

100 000 f. g, h
010 100 f h
SXT = , SYT= , SZT=| 2 92 21, (1)
0 1 010 f, g, h,
000 001 f, 9, h,

where the last dlice can be treated as randomly sampled from a 12-dimensional
continuous distribution. Hence, without loss of generality we may assume that the array
isof theformasin (1), i.e.

100 000 f, g, h
010 100 f h
X = Y= ’2:2922 )
001 010 f, g, h
0 0O 0 01 f4g4h4

Moreover, since al arrays randomly sampled from a small 36-dimensional environment
of (X,Y,Z) can be transformed to the form (1), we only need to show that a full rank-5
decomposition existsfor X and Y asin (2) and a small 12-dimensional environment of a

particular Z. For this, we will take



3)

N

11
S O =
A W N P
N g ow e

Construction of a rank-5 decomposition
We start with the array in (2) and show how a rank-5 decomposition can be obtained.
This is done by adding a fifth row to the dlices in (2) and using the approach of Ten
Berge (2004) to find a rank-5 decomposition of a 5x3x3 array. We denote our 5x3x3

array by
1 0 0] [0 0 O f, g, h]
0 1 0 1 0 0 f, g, h,
X=/0 0 1 Y=[{0 1 0|, Z=|f, g, h, (4)
0 0 O 0 0 1 f, g, h,
_Xl X2 XS_ _yl y2 y3_ _Z:I. 22 ZS_

where we may choose the values of X = (X1, X2, X3)", Y = (Y1, Y2, ¥3)” and z = (7, 2, z3)".
Let f = (f1, T2, f3, f2)", 9 = (Q1, 92, 93, 9a)” and h = (hy, hy, hg, hy)". It can be seen that we
may set X, =X, =X, =Y, =0 without loss of generality. Indeed, subtracting from the

fifth row in each slice x; times the first row, X, times the second row, X, times the third
row and Yy, times the fourth row yields an array with the same rank as (4). Somewhat

abusing the notation, the remaining elements on the fifth row will be denoted as

y =(y1, ¥2) and z = (z, 2, z3)". Hence, we consider the following array:

100 0 0 0 f, g, h
010 1 00 f, g, h,
X=/001/, Y=|0 1 0|, z=|f, g, h (5)
000 0 0 1 fo 9, hy
10 0 0] RARTIY L4 2, 4
The following rank-5 decomposition of (5) will be derived:
X =AlsB, Y =ACPB’, Z=ADB, (6)



with A (5x5), B (3x5) and C and D diagonal matrices. If the fifth row of A is deleted, a
rank-5 decomposition of the 4x3x3 array in (2) isthe resuilt.

Next, we show how to derive the component matrices A, B, C and D. We assume
that A is nonsingular. It can be seen that CA™X —A™Y =A™ Z -DAX =0 . Hence,
thej-th row a of A™ should satisfy &, (c,X -Y) =a/(Z -d,X)=0', where ¢, and d,
are the diagonal elements of C and D, respectively. Set the first element of a; to 1. From

(5) it followsthat a(c;X —Y) =0' isequivalent to

1
Cj _ﬁjyl
a; = Cj2 _lBjlej _ﬁjY2 ) (7)
C?_ﬁjylcjz_ﬁijCj
B
for somescalar £, . It remainsto satisfy & (Z —dj>~() =0',i.e. a; hasto be orthogonal to

~ ~ 1
the three columns of Z —d ;X . For a; in (7), thisis equivalent to the vector [,3 ] being

J

orthogonal to the columns of the 2x3 matrix

W, = {F(l)(cj,dj) G¥(c;.d)) H(l)(ci’di)}
J 1

F@c,) G@c,.d) H?(,d,) ®)

where the expressions for the elements of W, are given in the Appendix. For the vector
1

[ j to be orthogona to the columns of W, we must have rank(W;) = 1. We ensure
i

thisby choosing ¢; and d; such that

F® d G® d F® d H® d,
d { ((;J ) (2)(CJ J):I - d l: ((:1 i) (2)(01 i) =0, (9)
F&(c;) G¥(c;.d)) F*¥(c;) HY(c;.d))
but not F@(c;,d;) = F®(c;) = 0. Thefirst determinant in (9) equals
%cf+(e21+e22dj)c1.2+(ell+e12dj)cj +(801+802dj +eo3dj2) ' (10)

where the coefficients e depend on f, g, h, y and z. The expressions for g are given in

the Appendix. The second determinant in (9) equals



&C +(6y+8,d))c +(8, +8,d; +E,d])C; + (&, +&,d; +8,d]), (11)
where the coefficients €, depend on f, g, h, y and z. The expressions for €, are given in

the Appendix. The following lemma specifies the solutions (c;,d;) for which

F@(c,.d,)=F®(c,)=0.

Lemmal: Theexpression F®(c;,d;) =F®(c,) =0 isequivaent to:
—(fay) el —(fay, + f,¥,)¢; +(z - fy, — f,%1) =0, (12)
d =f,c+fci+f,c +f . (13)
Proof. It can be seen (see Appendix) that (12) is equivalent to F®(c;) =0 and (13) is

equivalentto F®(c,,d,) = 0. This completes the proof. O

Next, we determine (c;,d;) which satisfy both (10) and (11). We set y, =0. Then

€ = €5 =0 (see Appendix) and d; can be determined from (10) as

dj:_(%0?+%mf+%cj+%q_ (12

€, Cl +6,C; + &

Substituting (12) into (11) yields that c¢; can be found as a root of a 7-th degree
polynomial. We denote this polynomia by

Q(c) =g, ¢" +g,C° +05¢° +0, C* +0,C° +0,C* + G, C +0p. (13)

The coefficients g« depend only on f, g, h, y and z. Their expressions are given in the

Appendix. Since we need five solutions for ¢, the polynomia Q must have at least five
red roots. Because y, =0, there is only one solution (c;,d;) for which
F®(c,,d,) =F®(c;) =0 (see Lemma 1). The c; of this flawed solution is also a root

of Q. Therefore, Q must have seven real roots. One root is discarded and five out of the

six remaining roots are used as ¢, . Thisis again the partial uniqueness result obtained by

Ten Berge (2004). Once the ¢; and d; are known, the scalars S; can be chosen as



-F®c,,d;)/F®(c;). Then A™ follows from (7) and B can be determined from
B'=A7X.
Hence, for given vectors f, g, h, the problem is to choose y and z (under the

restriction y, = 0) such that the polynomial Q in (13) has seven real roots.

Rank 5 occurswith positive probability
We have applied the procedure above to the 4x3x3 array in (2) with Z asin (3). For

-0.06

0

y:( j z=|-015/, (14)

-0.42
-0.27

the polynomia Q has the following seven real roots. -9.85, -1.46, -0.86, -0.69, -0.68,
0.31 and 3.46. From Lemma 1 it follows that the flawed solution for ¢; is given by
c, = Zlf_—f3y2 = -0.86. (15)
aY2

Hence, six real roots of Q remain and a rank-5 decomposition can be constructed as
above.

Next, we show that a full rank-5 decomposition is aso possible in a smal
environment of Z, wherey and z remain the same. Define

S ={(q9,,9,.K,0,) : Q hassevenreal roots} . (16)

Since Q has a unique set of seven roots (for g, # 0), we may write

Q) = a (4, )4, - (A, — )4, —C)(As —C)(As —C)(A, —©), (17)
where a is ascaling parameter and A, are the roots of Q. By equating (13) and (17), it
can be verified that there exists a continuous mapping from (a,4,,4,,K,A,) to
(9,.9,,K,q,). Moreover, since Q has a unique set of seven roots (for g, # 0), this
mapping is one-to-one up to a permutation of (A,,4,,K,A,). Thisimplies that the set S;
has positive 8-dimensiona volume. The boundary points of S; are those (q,,0,,K,q,)

for which Q has at least two identical real roots. Then an aribitrary close approximation

by a polynomial with one pair of complex roots is possible, where the imaginary parts of



the complex roots are close to zero. Hence, S; isaclosed set. If Q has seven distinct real
roots for (q,,q,,K,q,), then (q,,q,,K,q,) isaninterior point of the set S;, and within
asmall environment of (q,,0,,K,q,) the polynomial Q aso has seven real roots. Since
the coefficients (q,,0,,K,q,) are continuous functions of f, g and h, it follows that in a

small environment of Z in (3), withy and z as in (14), the polynomial Q will still have
seven rea roots. Therefore, a full rank-5 decomposition is possible in a small
environment of Z. This shows that for real-valued 4x3x3 arrays of which the elements

are randomly sampled from a continuous distribution, rank 5 occurs with positive
probability.
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Appendix

The expressions for the elements of the matrix W, in (8) are asfollows:
FO(c,d)=f,c®+f,c?+f,c+(f, —d),
GY(c,d)=g,c*+g,c’+(g,-d)c+g,,
H®(c,d)=h,c®+(h,-d)c*+h,c+h,,

FP(0) = =(f,y,) " = (fay, + f,y,)c+ (2 = fy, = . 31),

G® (C,d) = _(g4y1) c? _(g3yl + g4yz)C+[Zz —05Y, _(gz _d)yl] )



H® (c,d) = _(h4y1) c? _[(hs _d)yl + h4y2]C+[Zs - (hs - d)yz - thl] .

The expressions for the coefficients g in (10) are as follows:

& =(f,2,-9,2),

ey = (12, - 9:2) — (1,9, — 9, f,) ¥ — (1.9, — 9. ) vz,

€, = 0,Y:~ 1Y,

&, =(f,2,-9,2) + (139, —9:f,) ¥, = (f.9: — 9, fa) i = (.9, — 9, f.) ¥,
e = (112 -0,2) + (1,9, -9, f) v, +(£,9, — 95 ) ¥,

€ = (fL+9)¥1 + 95y, — 2,

€3 = "Y1-

The expressions for the coefficients € _in (11) are asfollows:

& =(f,z,-hz),

& = (f3z, =hyz) = (fih, —h f,)y, = (fh, =0, f,) y,,

€, =7 th,y,,

&1 = (f,z,-hz) +(f;h, =y f,) y, = (fih —h f,)y, = (fih, = f,) y,,
& =(f.+h)y, +(f, +h)y,,

€ =V,

& = (fizs=hz)+(f,h —h,f)y +(f;h —hf)y,,

& =y, +(f +h)y, -z,

€3 = 7Y2-



The expressions for the coefficients gk in (13) are as follows:
G = €65, -€,68e,,
s = 28,8, 6, + 8,6, ~ 8, (8,6, +€,€,) ~8, 8,8, +85 €,
Us = &(2€, €, +€5) + 26, €, 6, =6, (66, +€, €, +€,6,) +E, €,
—Ey(8 8, +0,€,) ~ 6,08, T 26,8, 6;,
Uy = 28,8, €, +6,(26, €, +€) ~8,(6, €, +€, €, + €, 6) + 26, €, €,
—8,(600, +€, €, +€,€,) + 8,8, ~ €, (858, €, 8,) +E5(€5 +26,8)),

a; = éegz +2€, 6,6, ~€,(6,6, +€,6,) +€,(26, 6, +e122) —€,(en6, +€,6, +6,€5;)
+26,€, €, ~Ep(€; 8, T8y €, €, 8)y) t28,(ey 8 +2€, 8y),

0, = €, €5 — €y, €y, € + 28,8, €y, — 8, (€, €, + € €,) + € (265, €, +E})

—€,(6, 6, +€, €, +6,8,) +E5(26;, &, +E),
Oy =8 €5, — €, €y €, + 28, €, €, ~ (B € + €5, €,) + 265 €, €1,
Go =8 €5, ~ €, €1 € *+ €5 €01



