

A solution for diverging components in 3-way Candecomp/Parafac

Alwin Stegeman

a.w.stegeman@rug.nl

www.gmw.rug.nl/~stegeman

Summarizing Data in Simple Patterns

Information Technology → collection of huge data sets,
often multi-way data $z(i,j,k,\dots)$

Approximation: Multi-way data \approx simple patterns

- data interpretation (psychometrics, neuro-imaging, data mining)
- separation of chemical compounds (chemometrics)
- separation of mixed signals (signal processing)
- faster calculations (algebraic complexity theory, scientific computing)

Simple structure = rank 1

2-way array = matrix \mathbf{Z} ($I \times J$) with entries $z(i,j)$

rank 1: $\mathbf{Z} = \mathbf{a} \mathbf{b}^T = \mathbf{a} \circ \mathbf{b} \iff z(i,j) = a(i) \cdot b(j)$

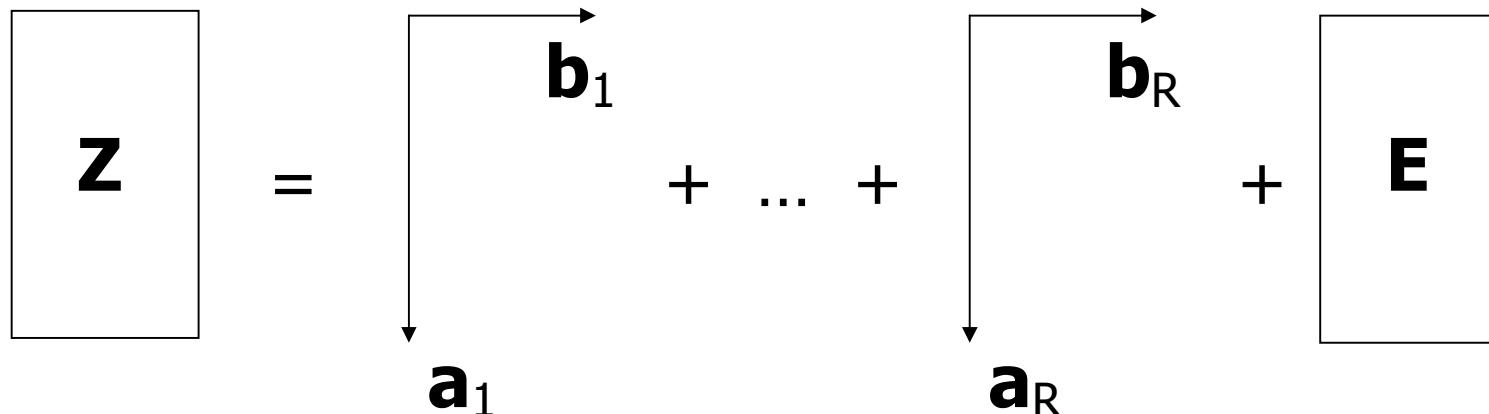
rank(\mathbf{Z}) = $\min \{R : \mathbf{Z} = \mathbf{a}_1 \circ \mathbf{b}_1 + \dots + \mathbf{a}_R \circ \mathbf{b}_R\}$

3-way array $\underline{\mathbf{Z}}$ ($I \times J \times K$) with entries $z(i,j,k)$

rank 1: $\underline{\mathbf{Z}} = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c} \iff z(i,j,k) = a(i) \cdot b(j) \cdot c(k)$

rank($\underline{\mathbf{Z}}$) = $\min \{R : \underline{\mathbf{Z}} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \dots + \mathbf{a}_R \circ \mathbf{b}_R \circ \mathbf{c}_R\}$

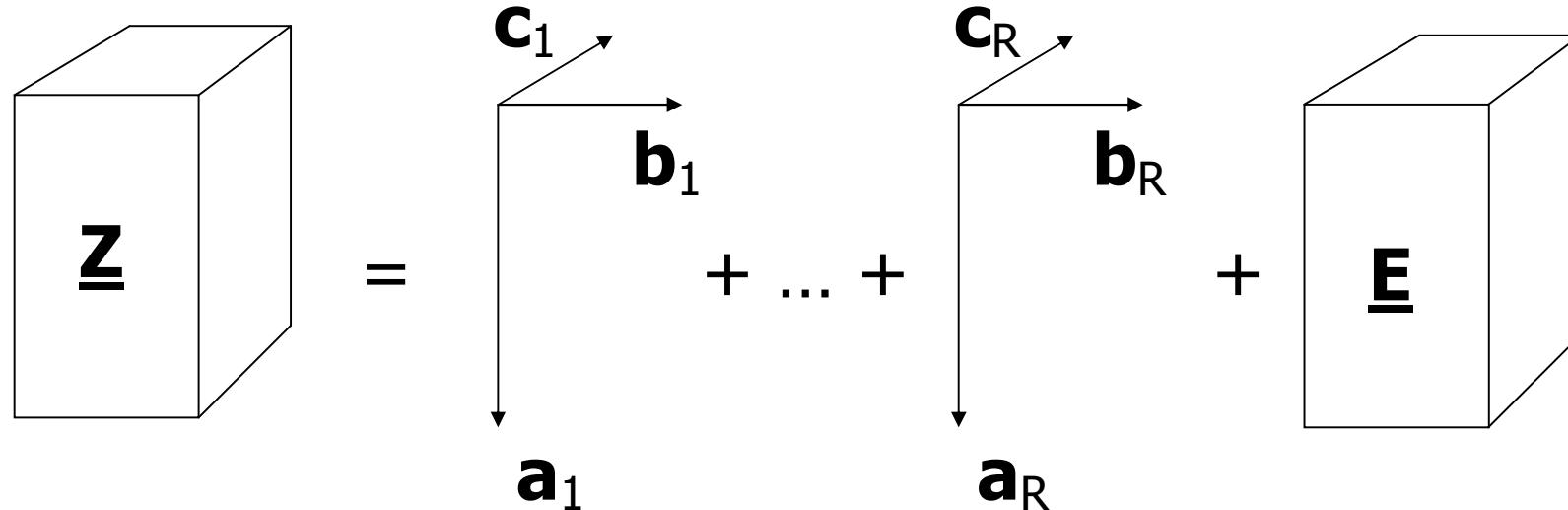
2-way (PCA) decomposition



$$\begin{aligned} Z &= a_1 \circ b_1 + \dots + a_R \circ b_R + E \\ &= \mathbf{A} \mathbf{B}^T + E \quad \text{with} \quad \mathbf{A} = [a_1 \dots a_R] \\ &\quad \mathbf{B} = [b_1 \dots b_R] \end{aligned}$$

Goal: Find (\mathbf{A}, \mathbf{B}) that minimize $\text{ssq}(\mathbf{E})$

3-way Candecomp/Parafac (CP)



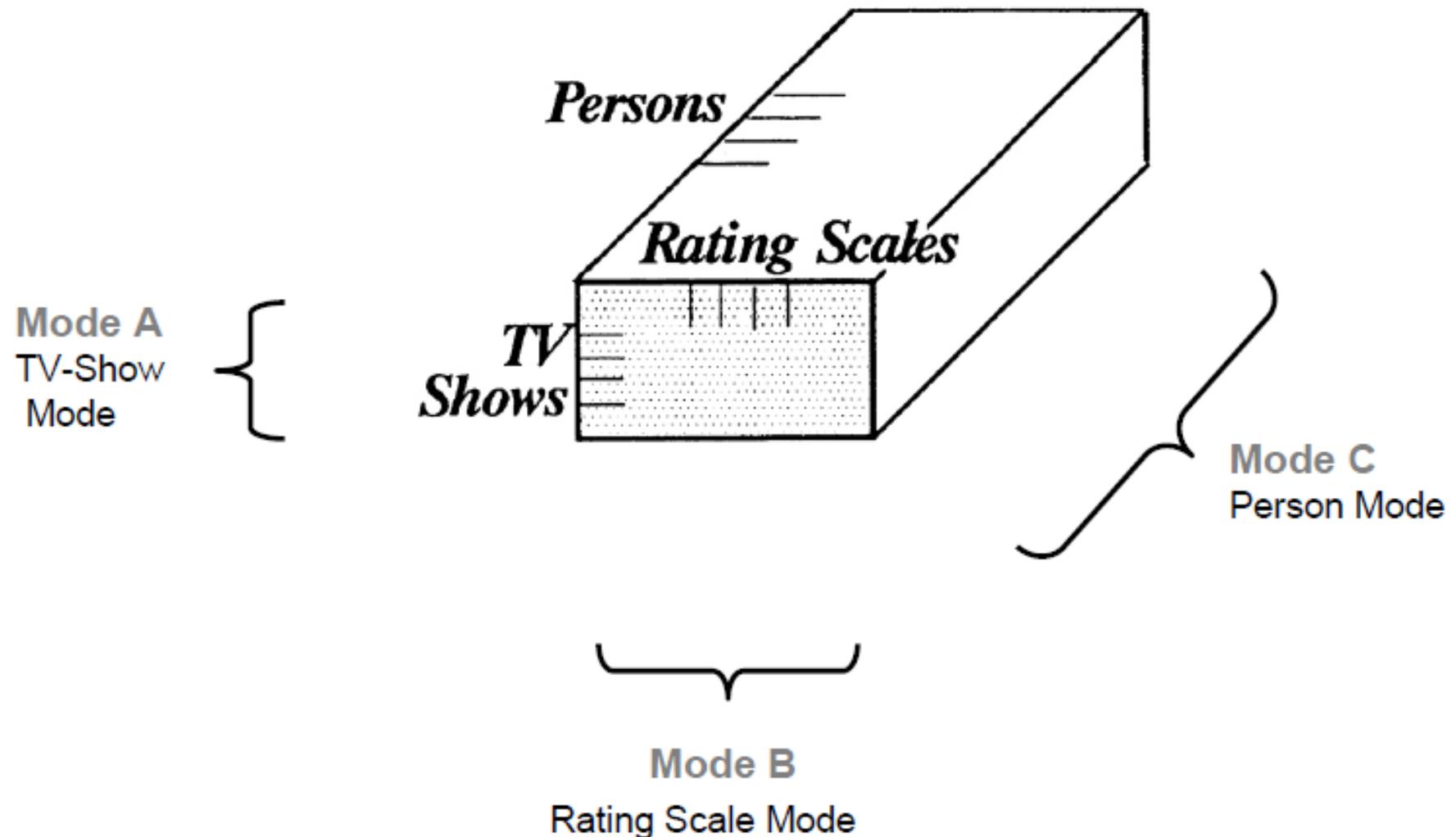
$$\underline{\mathbf{Z}} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \dots + \mathbf{a}_R \circ \mathbf{b}_R \circ \mathbf{c}_R + \underline{\mathbf{E}}$$

Goal: Find $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ that minimize $\text{ssq}(\underline{\mathbf{E}})$

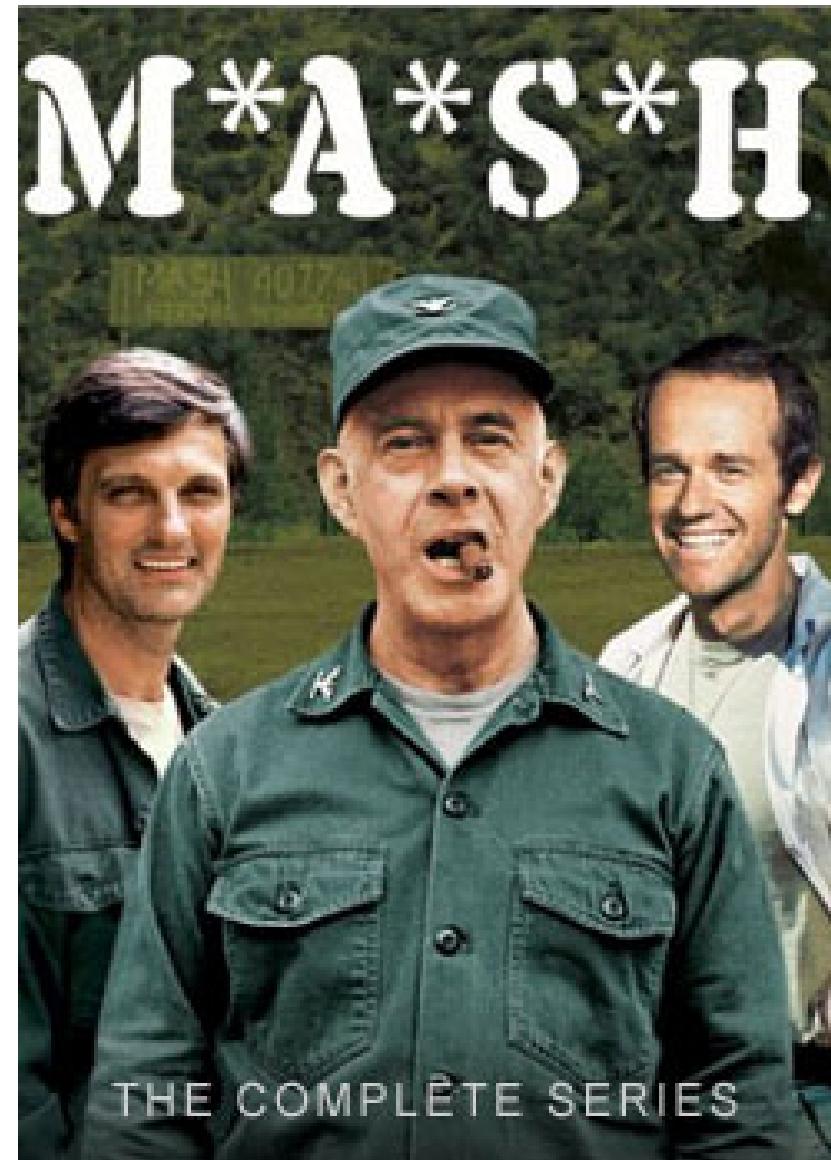
with $\mathbf{C} = [\mathbf{c}_1 \dots \mathbf{c}_R]$

	3-way CP	2-way decomp
computation	iterative algorithm	SVD
best rank- R approximation	yes	yes
rotational uniqueness	under mild conditions	no
existence for $R < \text{rank}(\text{data})$	not guaranteed	yes

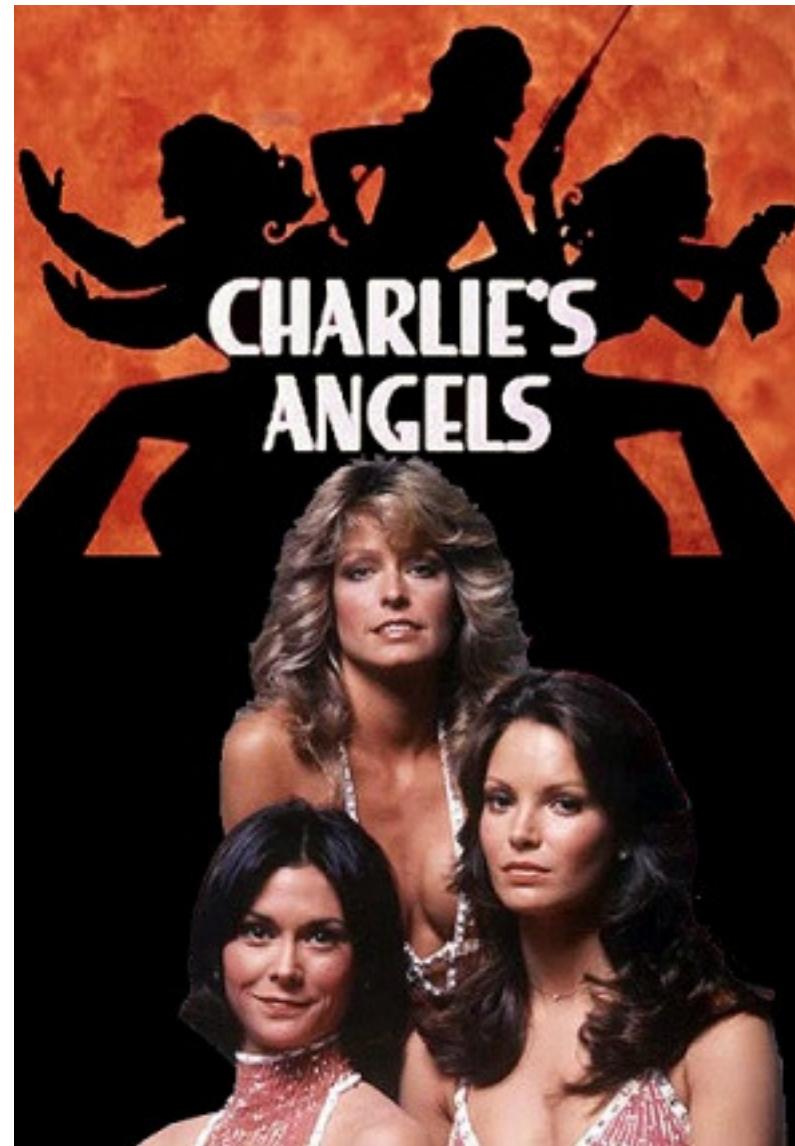
CP analysis of 3-way TV-ratings data



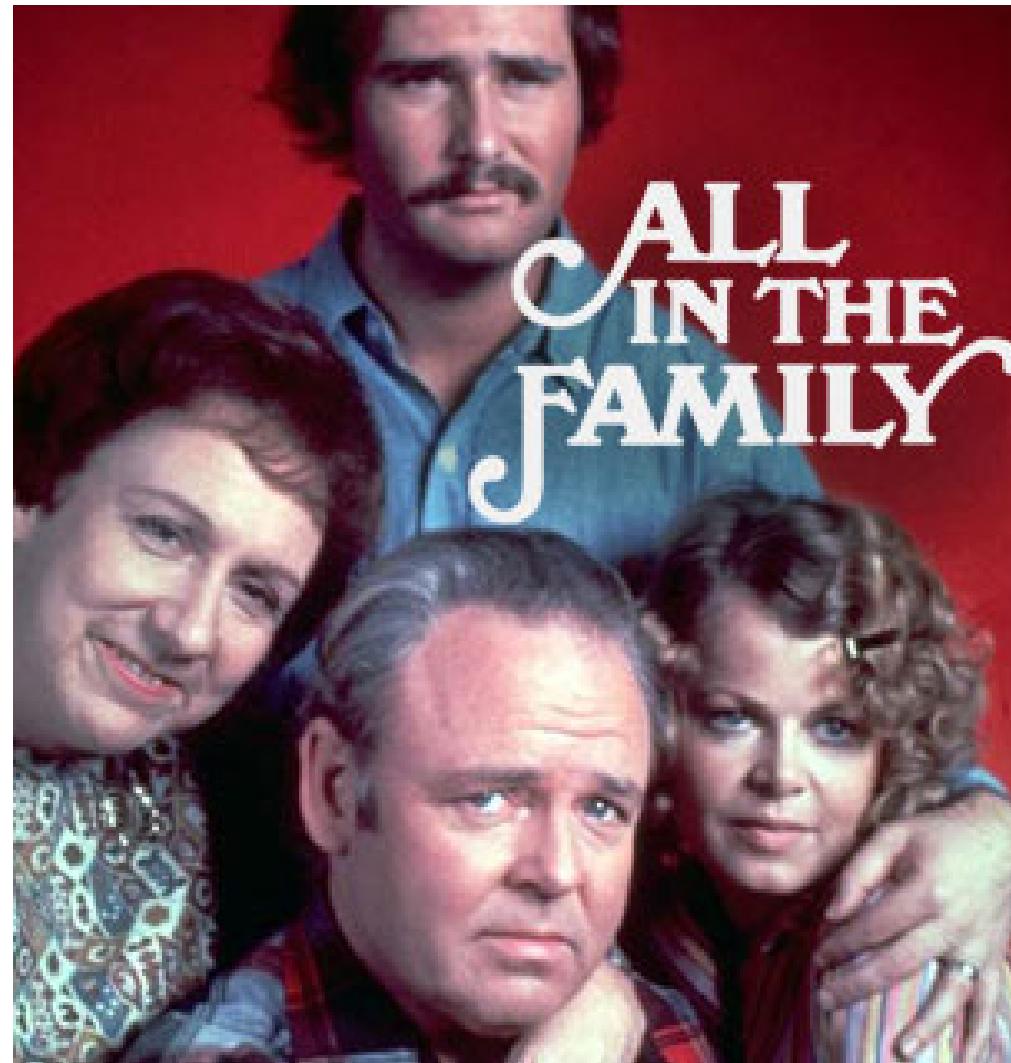
TV show 1 – Mash



TV show 2 – Charlie's Angels



TV show 3 – All in the Family



TV show 4 – 60 Minutes

TV show 5 – The Tonight Show

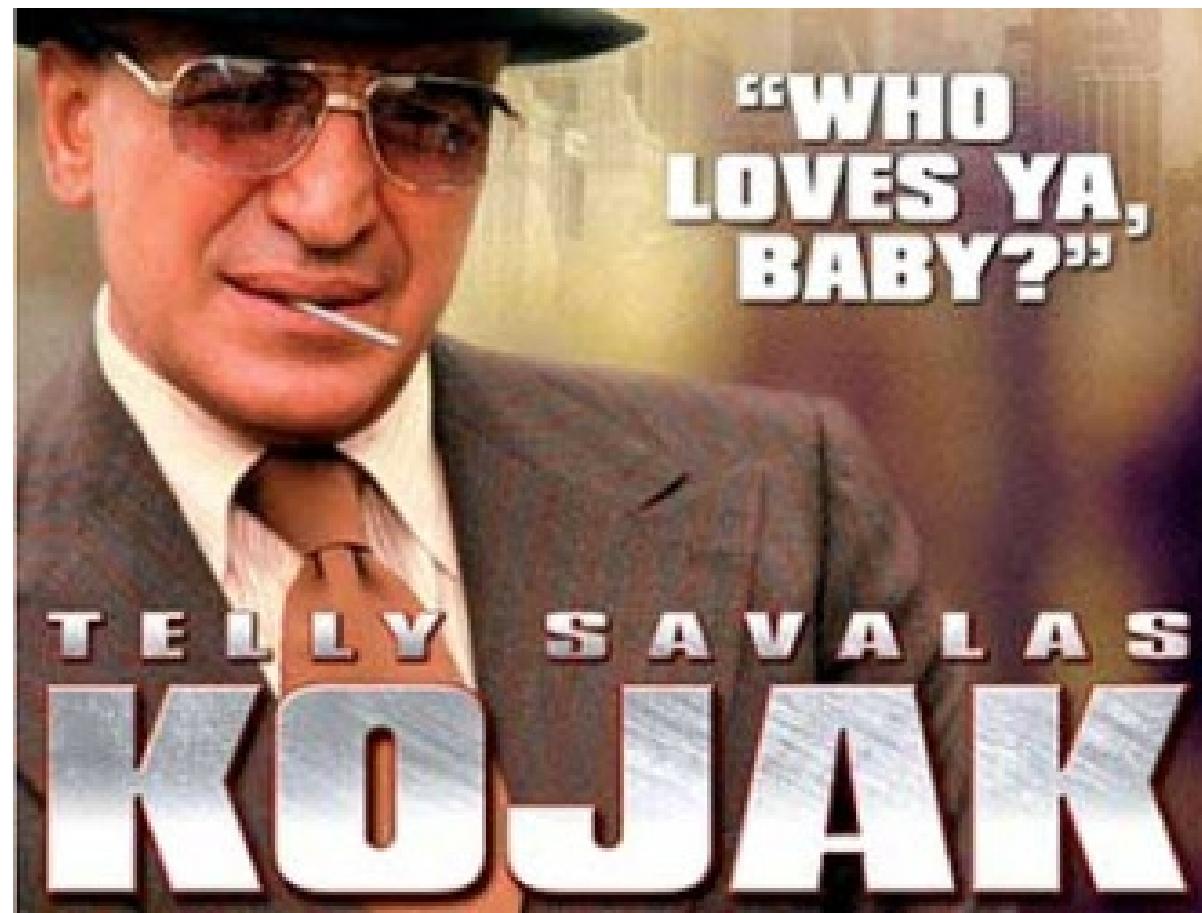
TV show 6 – Let's Make a Deal

TV show 7 – The Waltons

TV show 8 – Saturday Night Live

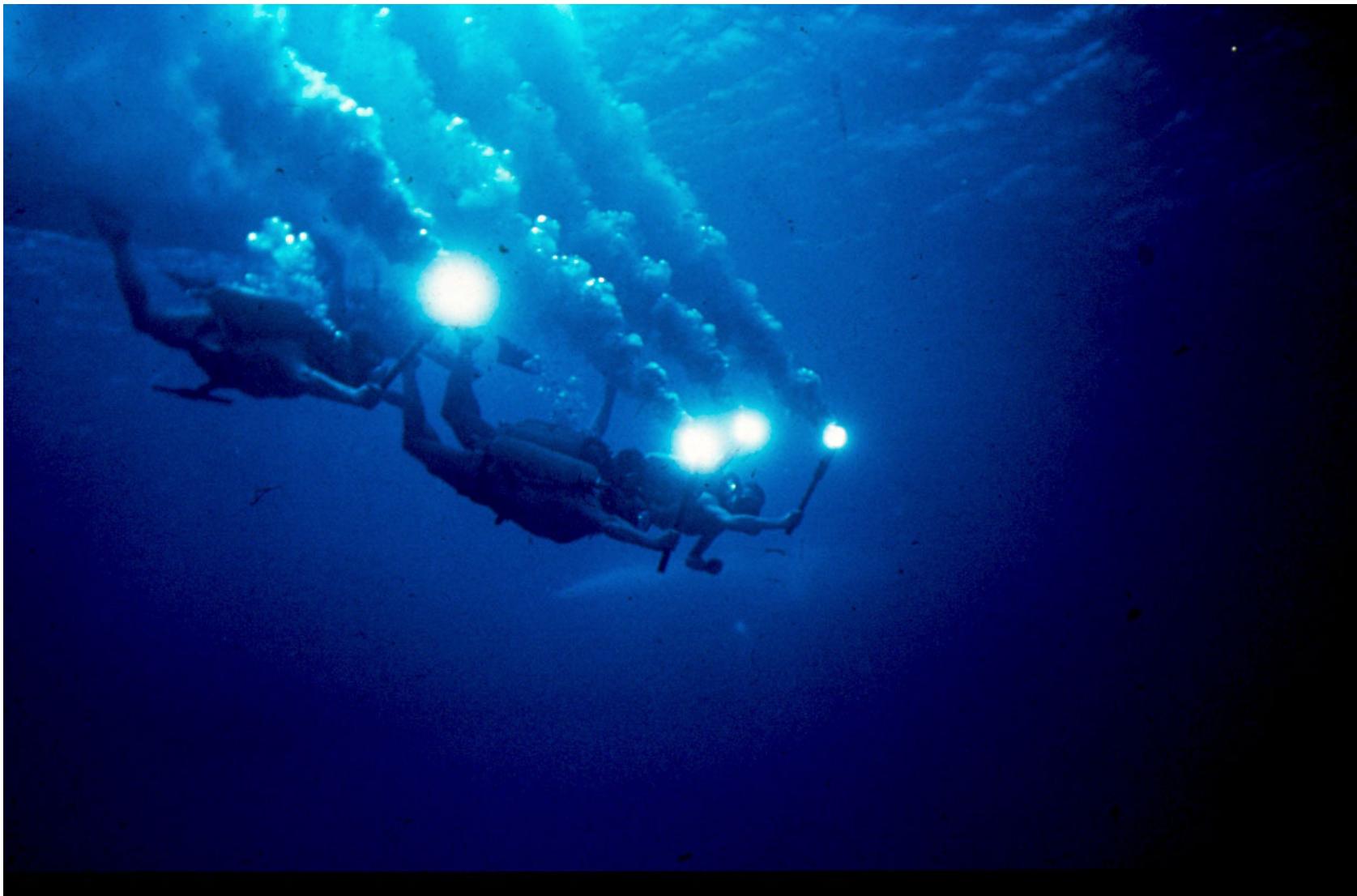
TV show 9 – News

TV show 10 – Kojak



TV show 11 – Mork and Mindy

TV show 12 – Jacques Cousteau



TV show 13 – Football

TV show 14 – Little House on the Prairie

TV show 15 – Wild Kingdom

Rating Scales 1-8

-6, -5, ..., -1, 0, 1, ..., 5, 6

1. Thrilling Boring
2. Intelligent . . . Idiotic
3. Erotic Not Erotic
4. Sensitive Insensitive
5. Interesting . . Uninteresting
6. Fast Slow
7. Intellectually . . Intellectually
Stimulating . . Dull
8. Violent Peaceful

Rating Scales 9-16

-6, -5, ..., -1, 0, 1, ..., 5, 6

- 9. Caring Callous
- 10. Satirical Not Satirical
- 11. Informative . . . Uninformative
- 12. Touching "Leaves Me Cold"
- 13. Deep Shallow
- 14. Tasteful Crude
- 15. Real Fantasy
- 16. Funny Not Funny

TV-ratings data

30 persons have rated 15 TV shows on 16 rating scales

Preprocessing:

- Centering across rating scales
- Centering across TV shows
- Normalizing within persons

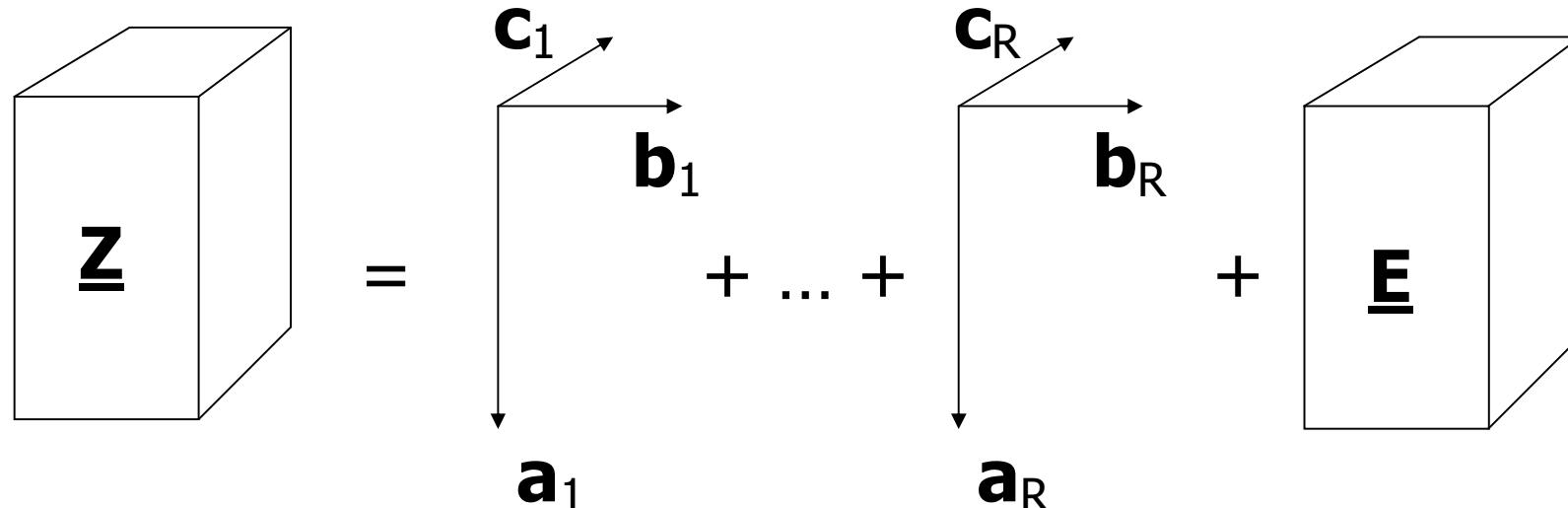
TV data also analyzed by Lundy et al. (1989) and Harshman (2004)

Output of the CP analysis with R components

Matrix **A** (15×R): columns are TV show components

Matrix **B** (16×R): columns are rating scales loadings

Matrix **C** (30×R): columns are person loadings



Scaling the CP solution

Column of **A**: mean squared component score = 1

Column of **B**: mean squared loading = 1

Column of **C**: sum of squared loadings = 4

$$\mathbf{Z} = g_1 (\mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1) + \dots + g_R (\mathbf{a}_R \circ \mathbf{b}_R \circ \mathbf{c}_R) + \mathbf{E}$$

weight g_r indicates strength of component r

columns are sign changed such that **C** has positive loadings

Fit of the CP solution

$$\text{Fit \%} = 100 - 100 \text{ ssq}(\underline{\mathbf{E}}) / \text{ssq}(\underline{\mathbf{Z}}) \quad (\text{range 0 to 100})$$

Congruence coefficient of two components

$$\text{cc}_A(1,2) = \frac{\mathbf{a}_1^T \mathbf{a}_2}{\sqrt{\text{ssq}(\mathbf{a}_1)} \sqrt{\text{ssq}(\mathbf{a}_2)}} \quad (\text{range -1 to +1})$$

$$\text{cc}(1,2) = \text{cc}_A(1,2) \text{cc}_B(1,2) \text{cc}_C(1,2)$$

The CP solution with 2 components

Overall: fit = 41.96 % cc(1,2) = 0.002

Component 1: fit = 28.46 % g₁ = 1.46

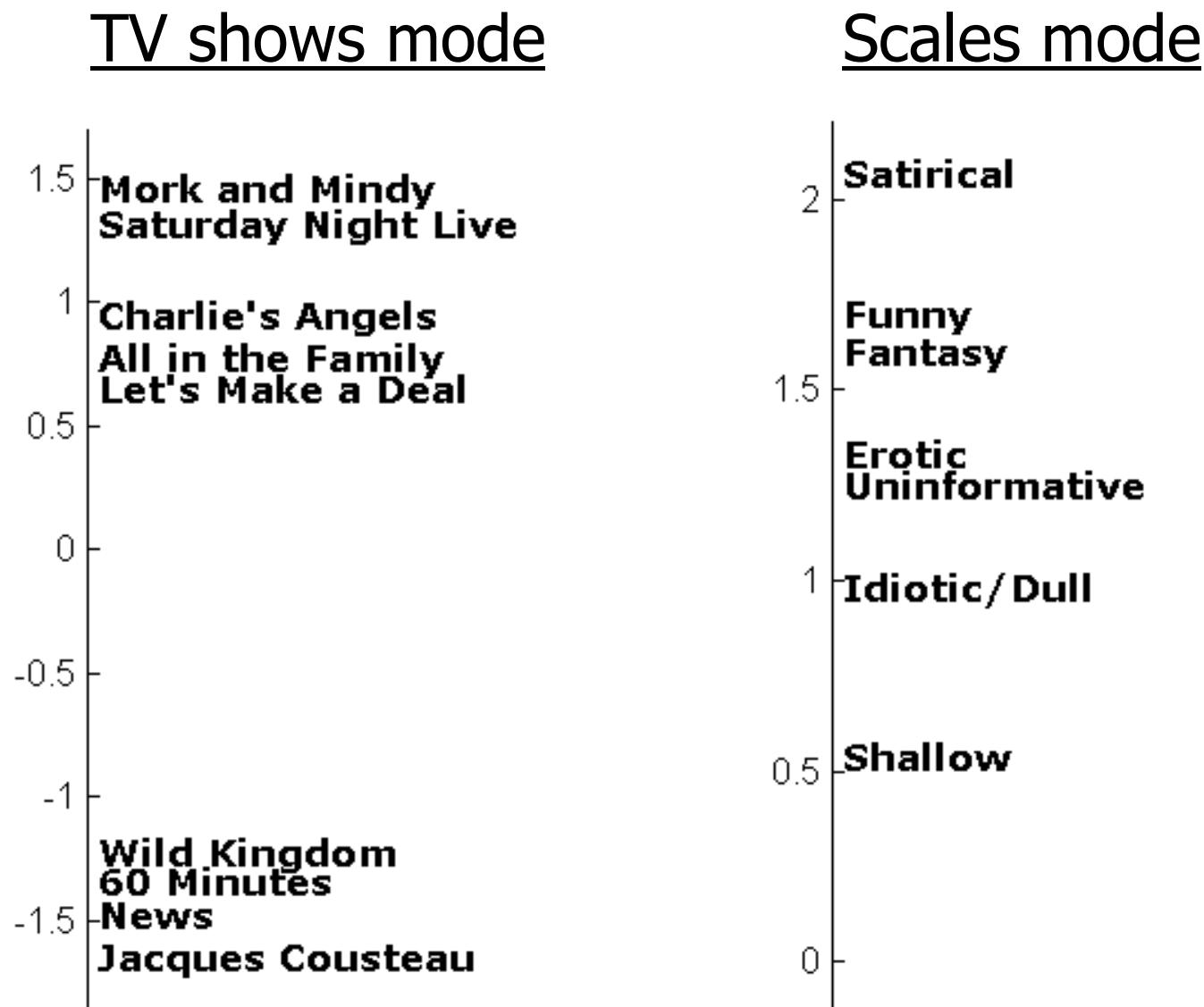
Component 2: fit = 13.59 % g₂ = 1.01

Interpretation:

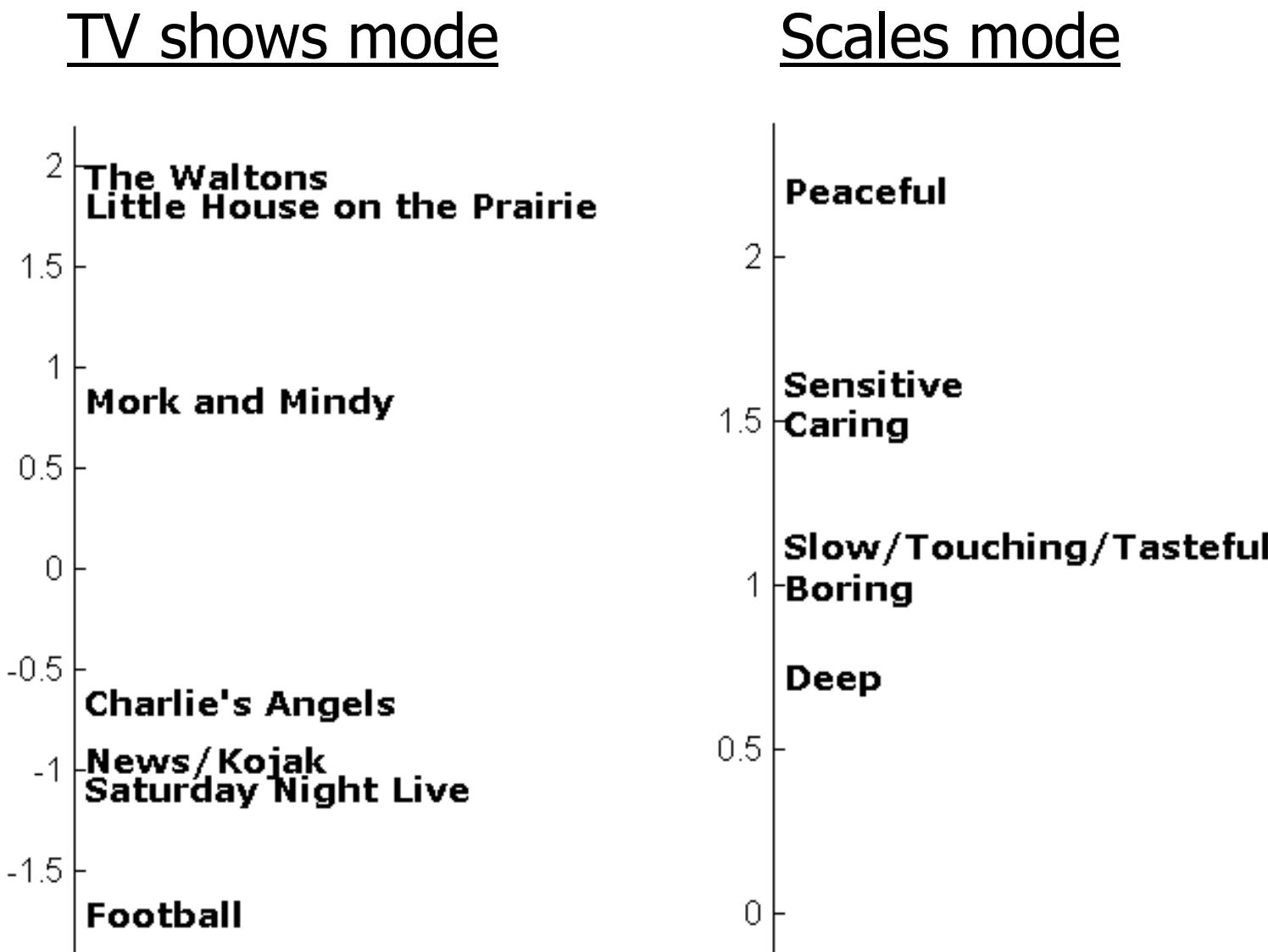
Component 1 = "Humor"

Component 2 = "Sensitivity"

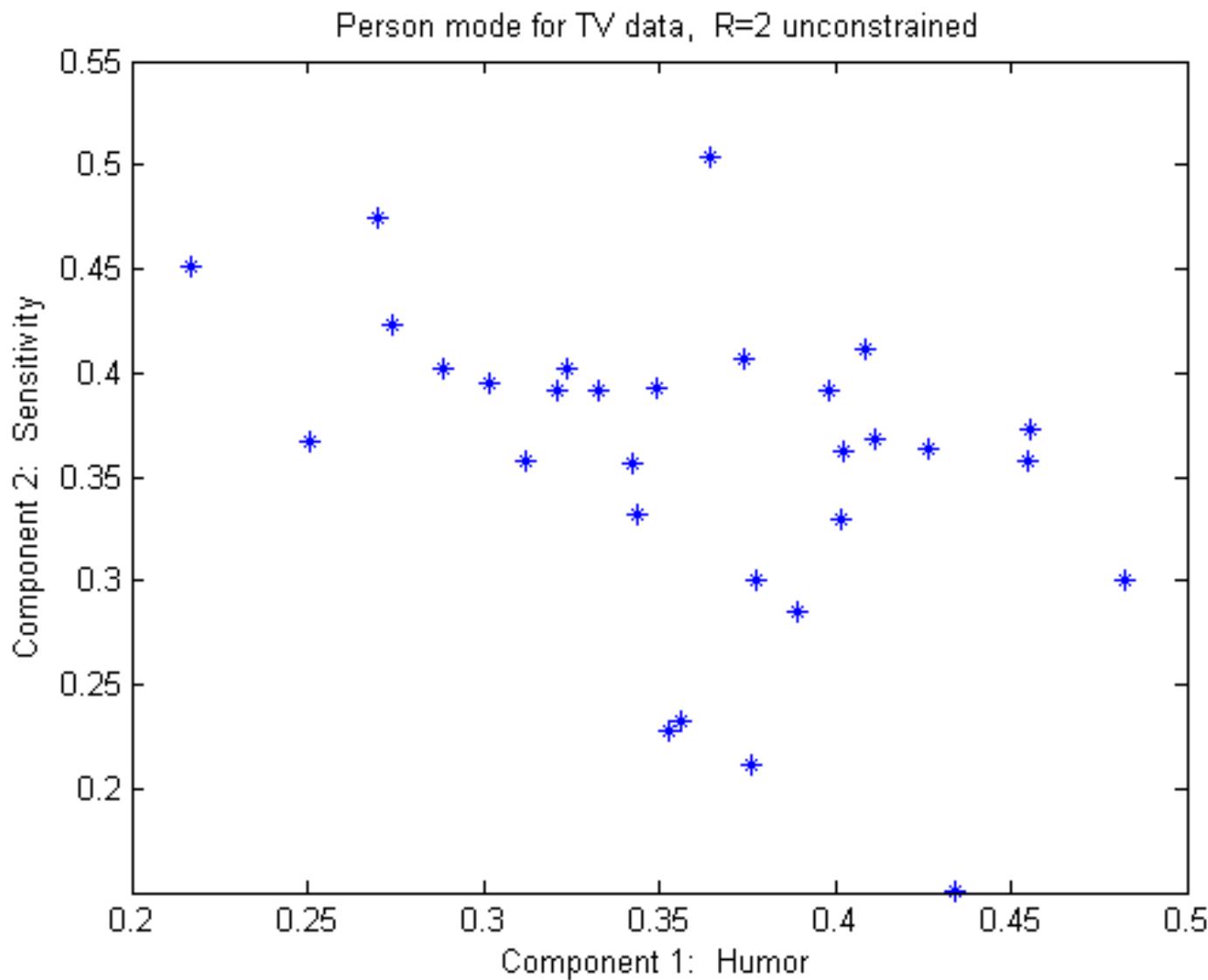
Component 1 = “Humor”



Component 2 = "Sensitivity"



Components 1 and 2 – persons plot



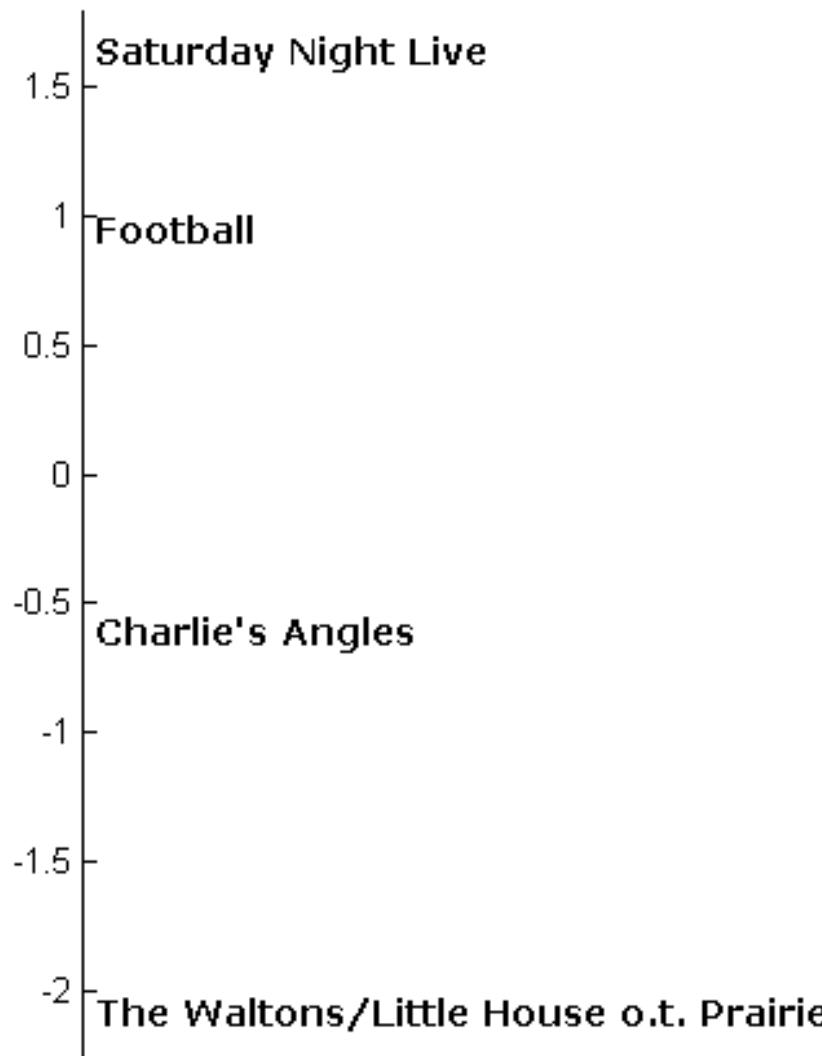
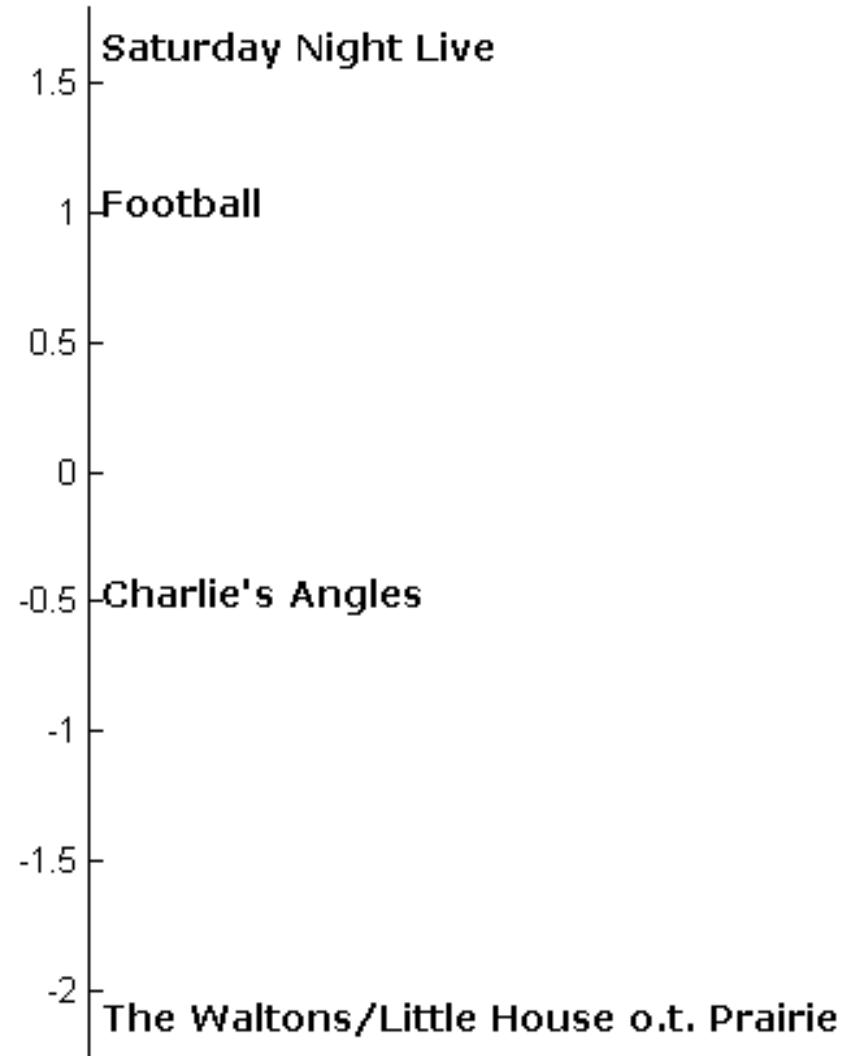
The CP solution with 3 components

Overall: fit = 50.76 % cc(1,2) = -0.996
cc(1,3) = -0.13
cc(2,3) = 0.12

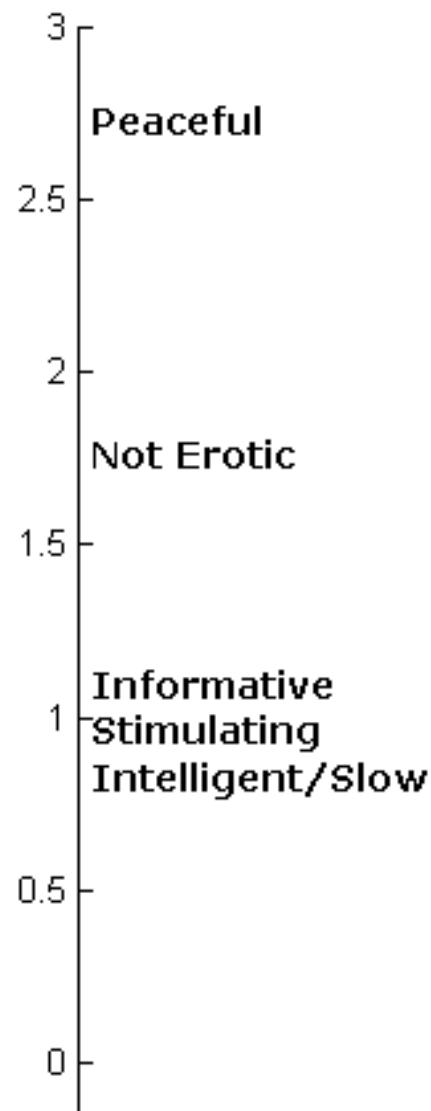
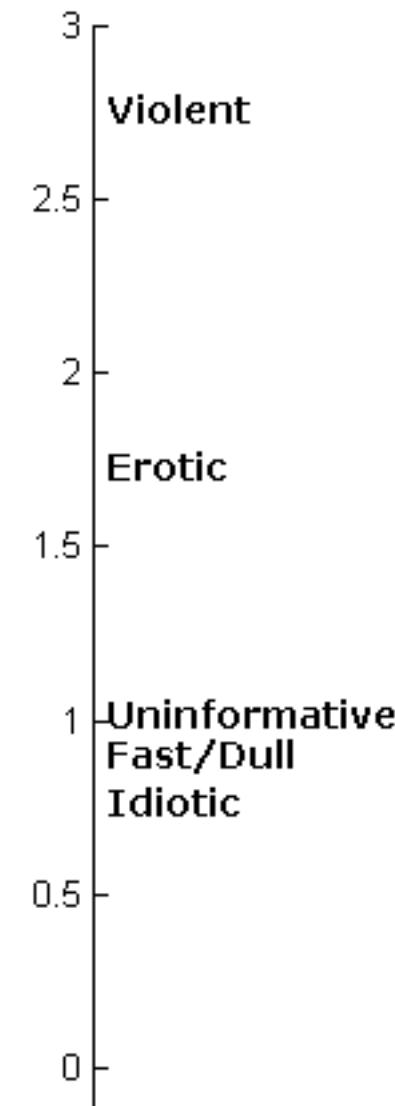
Component 3: fit = 24.38 % g₃ = 1.52

Interpretation: Components 1 & 2 = ???
Component 3 = "Humor"

Components 1 and 2 – TV shows mode



Components 1 and 2 – Scales mode



Comparing the solutions for R=2 and R=3

congruence coefficients of R=2 components (columns)
and R=3 components (rows):

	“Humor”	“Sensitivity”
Comp. 1	-0.15	-0.41
Comp. 2	0.15	0.46
“Humor”	0.93	0.01

Some Theory

- Diverging components occur when CP does not have an optimal solution (Krijnen et al., 2008; De Silva & Lim, 2008)
- CP has an optimal solution if the columns of **A** (or **B** or **C**) are restricted to be orthogonal (Harshman & Lundy, 1984; Krijnen et al., 2008)
- CP has an optimal solution if the data is nonnegative and **A,B,C** are restricted to be nonnegative (Lim, 2005; Lim & Comon, 2009)

R=3 components and orthogonal TV shows mode

Overall: fit = 50.22 % $cc(r,t) = 0$

Component 1: fit = 27.19 % $g_1 = 1.43$

Component 2: fit = 13.04 % $g_2 = 0.99$

Component 3: fit = 9.99 % $g_3 = 0.87$

Interpretation:

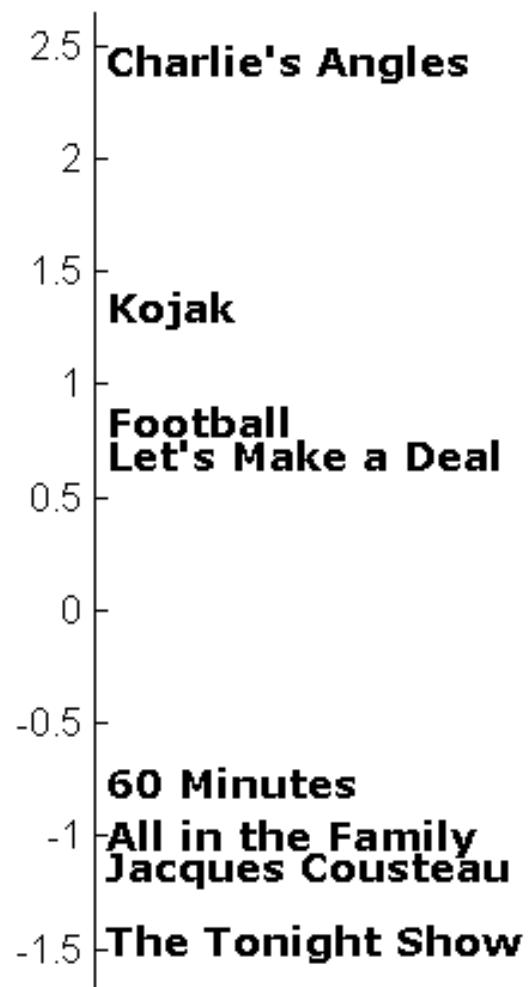
Component 1 = "Humor"

Component 2 = "Sensitivity"

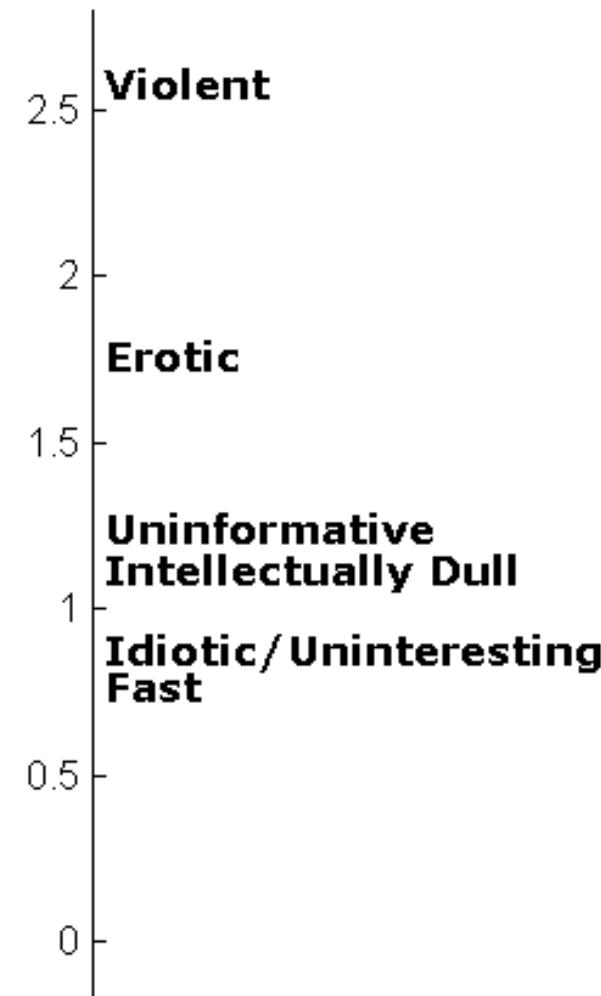
Component 3 = "Violence"

Component 3 = "Violence"

TV shows mode



Scales mode

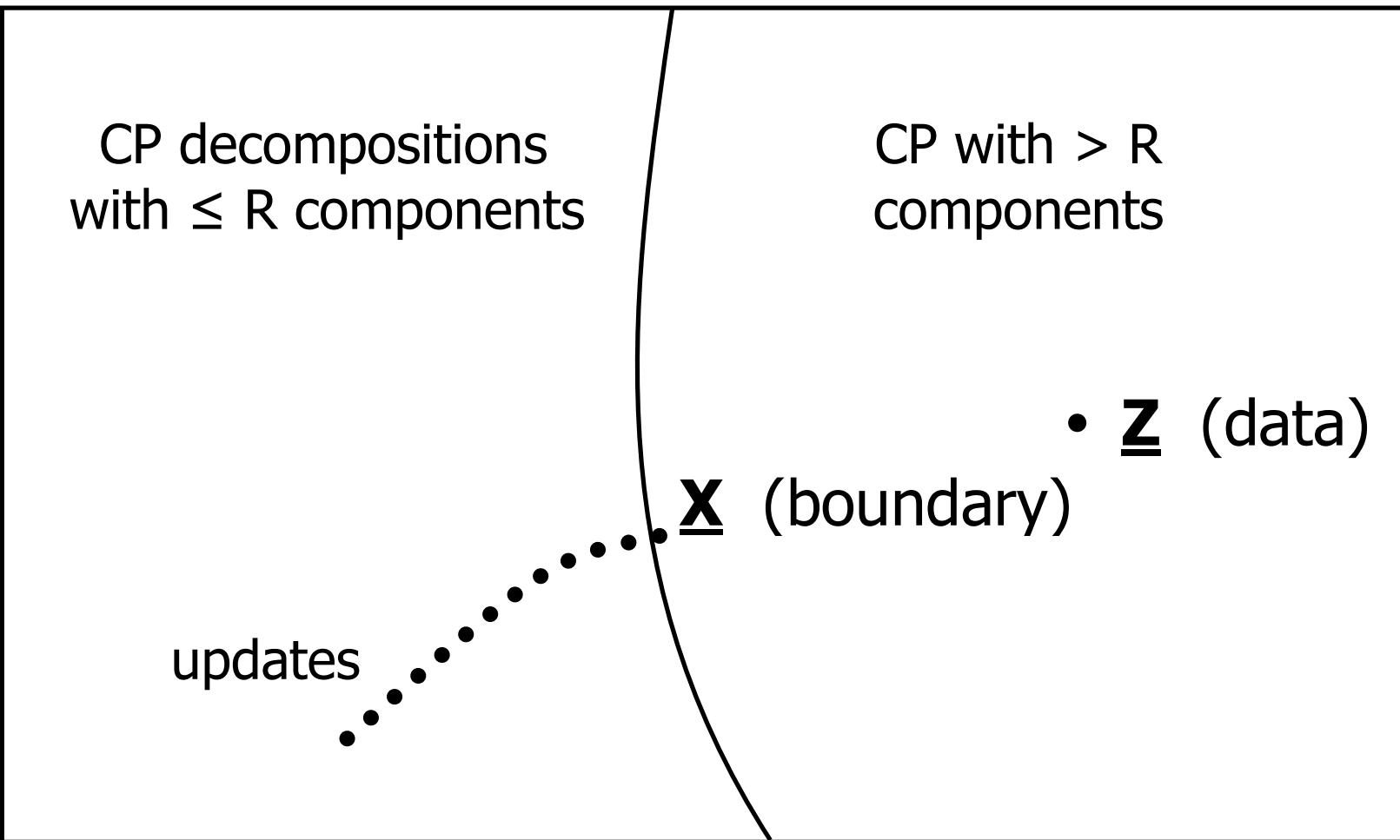


Comparing the solutions obtained so far

	R=2		R=3		
R=3 orth.	“H”	“S”	Comp.1	Comp.2	“H”
“Humor”	0.96	0.00	-0.20	0.19	0.95
“Sensitivity”	0.00	0.94	-0.30	0.36	0.03
“Violence”	0.11	0.08	0.30	-0.24	-0.03
“H” (R=2)			-0.15	0.15	0.93
“S” (R=2)			-0.41	0.46	0.01

→ the two diverging components relate to “S” and “V”

Some more Theory



- CP does not have an optimal solution if optimal boundary point $\underline{\mathbf{X}}$ does not have a CP decomposition with $\leq R$ components
- In that case, the decomposition of $\underline{\mathbf{X}}$ contains one or more interaction terms, e.g., $\mathbf{s}_1 \otimes \mathbf{t}_2 \otimes \mathbf{u}_2$

→ How to find $\underline{\mathbf{X}}$ and its decomposition?

Algorithms exist for:

- $I \times J \times 2$ arrays and $R \leq \min(I, J)$
(Stegeman & De Lathauwer, 2009)
- $I \times J \times K$ arrays and $R=2$
(Rocci & Giordani, 2010)

Two-stage method for $I \times J \times K$ arrays and general R

First fit CP. In case of diverging components, do this:

- For combinations of nondiverging and groups of 2,3,4 diverging components, the form of the decomposition of the limit point $\underline{\mathbf{X}}$ has been proven (Stegeman, 2012,2013)
- This form of decomposition is fitted to the data $\underline{\mathbf{Z}}$ with initial values obtained from the diverging CP decomposition (Stegeman, 2012,2013)
- This yields $\underline{\mathbf{X}}$ and its decomposition with interaction terms (Stegeman, 2012,2013)

The form of the limit of two diverging components is:

$$g_{111} (\mathbf{s}_1 \otimes \mathbf{t}_1 \otimes \mathbf{u}_1) + g_{221} (\mathbf{s}_2 \otimes \mathbf{t}_2 \otimes \mathbf{u}_1) + g_{122} (\mathbf{s}_1 \otimes \mathbf{t}_2 \otimes \mathbf{u}_2)$$

For the TV data with R=3, we fit the decomposition:

$$g_{111} (\mathbf{s}_1 \otimes \mathbf{t}_1 \otimes \mathbf{u}_1) + g_{221} (\mathbf{s}_2 \otimes \mathbf{t}_2 \otimes \mathbf{u}_1) + g_{122} (\mathbf{s}_1 \otimes \mathbf{t}_2 \otimes \mathbf{u}_2)$$

$$+ g_{333} (\mathbf{s}_3 \otimes \mathbf{t}_3 \otimes \mathbf{u}_3)$$

Decomposition of the limit point in 4 terms

Overall: fit = 50.7571 % (50.7569 for R=3)

$g_{111} (\mathbf{s}_1 \otimes \mathbf{t}_1 \otimes \mathbf{u}_1)$: fit = 7.62 % $g_{111} = 0.99$

$g_{221} (\mathbf{s}_2 \otimes \mathbf{t}_2 \otimes \mathbf{u}_1)$: fit = 10.75 % $g_{221} = 0.95$

$g_{122} (\mathbf{s}_1 \otimes \mathbf{t}_2 \otimes \mathbf{u}_2)$: fit = 1.55 % $g_{122} = -0.33$

$g_{333} (\mathbf{s}_3 \otimes \mathbf{t}_3 \otimes \mathbf{u}_3)$: fit = 24.37 % $g_{333} = 1.52$

Interpretation: \mathbf{s}_1 and \mathbf{t}_1 = “Violence”

\mathbf{s}_2 and \mathbf{t}_2 = “Sensitivity”

\mathbf{s}_3 and \mathbf{t}_3 = “Humor”

Comparison to R=3 solution with orth. TV shows

	“Humor”	“Sensitivity”	“Violence”
$g_{111} (\mathbf{s}_1 \circ \mathbf{t}_1 \circ \mathbf{u}_1)$	-0.07	0.13	0.86
$g_{221} (\mathbf{s}_2 \circ \mathbf{t}_2 \circ \mathbf{u}_1)$	0.05	0.81	0.02
$g_{122} (\mathbf{s}_1 \circ \mathbf{t}_2 \circ \mathbf{u}_2)$	-0.03	-0.02	-0.03
$g_{333} (\mathbf{s}_3 \circ \mathbf{t}_3 \circ \mathbf{u}_3)$	0.95	0.04	-0.03

Interpretation of the decomposition in 4 terms

s_r = TV show component r

t_r = Rating scale loadings r

u_r = Idealized person r

	TV shows	scales	id. person	weight g
(s₁ot₁ou₁)	Violent	Violence	1	0.99
(s₂ot₂ou₁)	Sensitive	Sensitivity	1	0.95
(s₁ot₂ou₂)	Violent	Sensitivity	2	-0.33
(s₃ot₃ou₃)	Humorous	Humor	3	1.52

Remarks

The decomposition of the limit point resembles the R=3 CP solution with orthogonal scales.

However, orthogonality between “Sensitivity” and “Violence” is not intuitive.

The negative interaction term between “Violent” TV shows and “Sensitivity” scales is more intuitive.

Lundy et al. (1989) use R=3 orth. CP solution and fit full $3 \times 3 \times 3$ weights array: interactions between “Humor” scales and “Sensitive” and “Violent” TV shows.

References

- De Silva, V. & Lim, L-H. (2008). Tensor rank and the ill-posedness of the best low-rank approximation problem. *SIAM Journal on Matrix Analysis and Applications*, **30**, 1084-1127.
- Harshman, R.A., & Lundy, M.E. (1984). Data preprocessing and the extended Parafac model. In: *Research Methods for Multimode Data Analysis*, H.G. Law et al., Editors, Praeger, New York, pp. 216-284.
- Harshman, R.A. (2004). The problem and nature of degenerate solutions or decompositions of 3-way arrays. Talk at the Tensor Decompositions Workshop, Palo Alto, CA, American Institute of Mathematics.
- Krijnen, W.P., Dijkstra, T.K. & Stegeman, A. (2008). On the non-existence of optimal solutions and the occurrence of “degeneracy” in the Candecomp/Parafac model. *Psychometrika*, **73**, 431-439.
- Lim, L.-H. (2005). Optimal solutions to non-negative Parafac/ multilinear NMF always exist. Talk at the Workshop of Tensor Decompositions and Applications, CIRM, Luminy, Marseille, France.
- Lim, L.-H. & Comon, P. (2009). Nonnegative approximations of nonnegative tensors. *Journal of Chemometrics*, **23**, 432-441.

- Lundy, M.E., Harshman, R.A., & Kruskal, J.B. (1989). A two-stage procedure incorporating good features of both trilinear and quadrilinear models. In: *Multiway Data Analysis*, R. Coppi & S. Bolasco (Editors), North-Holland, pp. 123-130.
- Rocci, R. & Giordani, P. (2010). A weak degeneracy revealing decomposition for the Candecomp/Parafac model. *Journal of Chemometrics*, **24**, 57-66.
- Stegeman, A. (2012). Candecomp/Parafac – from diverging components to a decomposition in block terms. *SIAM Journal on Matrix Analysis and Applications*, **33**, 291-316.
- Stegeman, A. (2013). A three-way Jordan canonical form as limit of low-rank tensor approximations. *SIAM Journal on Matrix Analysis and Applications*, to appear.
- Stegeman, A. & De Lathauwer, L. (2009). A method to avoid diverging components in the Candecomp/Parafac model for generic $I \times J \times 2$ arrays. *SIAM Journal on Matrix Analysis and Applications*, **30**, 1614-1638.