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Abstract— Nonexistence of a best rank-R approximation of
a three-way array hampers the practical use of the Canonical
Polyadic Decomposition (CPD) for exploratory data analysis.
We present theoretical results on nonexistence of a best
rank-R approximation and propose a method to overcome this
problem by augmenting the CPD with one or more interaction
terms.
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I. TENSOR RANK AND CPD

The rank of an order-3 tensor or three-way array Y ∈
RI×J×K is defined as the smallest number of rank-1 arrays
whose sum equals Y . A three-way array has rank 1 if it is
the outer vector product of three nonzero vectors. The outer
vector product Y = a◦b = abT is a rank-1 matrix (or order-
2 tensor) with entries yij = ai bj . The outer vector product
Y = a ◦ b ◦ c is rank-1 tensor with entries yijk = ai bj ck.
We have

rank(Y) = min{R : Y =

R∑
r=1

(ar ◦ br ◦ cr) } . (1)

The problem of finding a best rank-R approximation to Z ∈
RI×J×K can be denoted as

Minimize ‖Z − Y‖F (2)
subject to Y ∈ SR(I, J,K) ,

where SR(I, J,K) denotes the rank-R set

SR(I, J,K) = {Y ∈ RI×J×K : rank(Y) ≤ R} , (3)

and ‖ · ‖F denotes the Frobenius norm (i.e., the square root
of the sum-of-squares). Problem (2) is equivalent to finding
a best-fitting CPD to Z , where we write the CPD as

R∑
r=1

gr (ar ◦ br ◦ cr) , (4)

with gr ≥ 0 and the vectors ar,br, cr having unit norm
[9] [10] [6] [1]. This model has applications in chemomet-
rics, signal processing, the behavioral sciences, algebraic
complexity theory, and data mining in general [12]. An
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attractive feature of the CPD is its rotational uniqueness
property under mild conditions, as opposed to two-way
techniques as principal component analysis or factor analysis
[4], [5]. For later use, we define the component matrices
A = [a1 . . . aR], B = [b1 . . . bR], C = [c1 . . . , cR], and
the vector of weights g = (g1 . . . gR)

T . Also, we define the
following more general decomposition due to [30] which
is also known as multilinear or higher-order singular value
decomposition (HOSVD) [2]:

R∑
r=1

P∑
p=1

Q∑
q=1

grpq (ar ◦ bp ◦ cq) . (5)

The HOSVD does not have the rotational uniqueness prop-
erty of the CPD. Hence, to obtain an interpretable HOSVD
solution, a rotation method should be applied.

II. NONEXISTENCE OF A BEST RANK-R APPROXIMATION

Unfortunately, a best rank-R approximation of Z need
not exist for R ≥ 2 because the set SR(I, J,K) is not
closed [3]. In such a case, trying to compute a best rank-
R approximation yields a rank-R sequence converging to
a boundary point X of SR(I, J,K) with rank(X ) > R.
As a result, while running the iterative CPD algorithm,
the decrease of the objective function becomes very slow,
and some (groups of) columns of A, B, and C become
nearly linearly dependent, while the corresponding weights
gr increase without bound [14] [13]. This phenomenon is
known as “diverging components” or “degenerate solutions”
or “diverging rank-1 terms”. Needless to say, diverging rank-
1 terms should be avoided if an interpretation of the rank-
1 terms is needed. In simulation studies with random Z ,
diverging rank-1 terms occur very often [20] [22] [21] [25].

Nonexistence of a best rank-R approximation can be
avoided by imposing constraints on the rank-1 terms in
(A,B,C). Imposing orthogonality constraints on (one of)
the component matrices guarantees existence of a best rank-
R approximation [7] [13], and the same is true for nonneg-
ative Z under the restriction of nonnegative A,B,C [15].
Also, [16] show that constraining the magnitude of the inner
products between pairs of columns of A,B,C guarantees ex-
istence of a best rank-R approximation. However, imposing
constraints will not be suitable for all CPD applications. As
an alternative to deal with diverging rank-1 terms, methods
have been developed to obtain the limit point X of the
diverging rank-R sequence and a sparse decomposition of
X [29] [19] [25] [26].

There are not many theoretical results on the
(non)existence of a best rank-R approximation for specific



three-way arrays or sizes. It has been proven that 2× 2× 2
arrays of rank 3 do not have a best rank-2 approximation
[3]. Proofs of (non)existence of a best rank-R approximation
for generic I × J × 2 arrays can be found in [22] [27];
see Table I. Although diverging rank-1 terms may also
occur due to a bad choice of starting point for the iterative
algorithm [18] [23], if trying many random starting points
does not help, then this is strong evidence for nonexistence
of a best rank-R approximation.

TABLE I
EXISTENCE OF A BEST RANK-R APPROXIMATION FOR GENERIC

I × J × 2 ARRAYS Z , WITH I ≥ J ≥ 2 AND R ≥ 2 [22] [27].

size of Z rank(Z) R Best rank-R ?

I = J I + 1 R ≥ I + 1 always

I = J I + 1 R = I zero volume

I = J I + 1 R < I positive volume

I = J I R ≥ I always

I = J I R < I positive volume

I > J min(I, 2J) R ≥ min(I, 2J) always

I > J min(I, 2J) min(I, 2J) > R > J almost everywhere

I > J min(I, 2J) R = J positive volume

I > J min(I, 2J) R < J positive volume

III. FINDING THE LIMIT POINT AND ITS SPARSE
DECOMPOSITION

The following approach to deal with diverging rank-
1 terms is an alternative to imposing constraints in
CPD. Let Y(n) denote the array formed by the CPD
(A(n),B(n),C(n),g(n)) after the n-th iteration of a CPD
algorithm. For data Z of rank larger than R, the array Y(n)

will converge to the boundary of the rank-R set SR(I, J,K).
Indeed, if a CPD algorithm is designed to minimize ‖Z −
Y(n)‖F , then Y(n) will move from within the rank-R set
to a boundary point X of the rank-R set. We call X an
optimal boundary point if ‖Z − X‖F is minimal over all
boundary points of the rank-R set. If there is no optimal
boundary point X with rank less than or equal to R, then
a best rank-R approximation to Z does not exist. In that
case, the rank-R sequence Y(n) converges to a limit X with
rank larger than R and will feature diverging rank-1 terms
[13]. Next, we consider the problem of finding the limit
X and a nondiverging sparse decomposition of X that can
be interpreted. We refer to this decomposition of X as the
CPlimit decomposition.

Algorithms to find the limit X directly, whether it has rank
R or larger, exist only for R = 2 [19], and for I×J×2 arrays
[29] [24]. These algorithms are fast and diverging rank-1
terms do not occur. For R ≥ 3 and I × J ×K arrays with
min(I, J,K) ≥ 3 such algorithms have not been found. As
an alternative, [25] [26] proposes the following approach.
Suppose trying to find a best rank-R approximation for Z
results in diverging rank-1 terms and one is convinced that

no best rank-R approximation exists. Then the form of the
CPlimit decomposition of the limit X can be determined
from the number of groups of diverging rank-1 terms in the
CPD sequence Y(n), and the numbers of diverging rank-
1 terms in each group. That is, in each case, the form of
the CPlimit decomposition is dictated by the mathematical
results of [25] [26]. The nondiverging CPlimit decomposition
of X can be found by fitting this form of decomposition
to Z , using initial values obtained from the CPD sequence
(A(n),B(n),C(n),g(n)).

IV. THE FORM OF THE CPlimit DECOMPOSITION

For the description of the form of the CPlimit decompo-
sition, we need the following notation. A three-way array
may be multiplied by a matrix in one of its modes. The
multiplication of Y ∈ RI×J×K by matrices S ∈ RI2×I , T ∈
RJ2×J , and U ∈ RK2×K , is denoted as Y2 = (S,T,U) · Y .
The result of the multiplication is an Y2 ∈ RI2×J2×K2 with
entries

y
(2)
ijk =

I∑
r=1

J∑
p=1

K∑
q=1

sir tjp ukq yrpq , (6)

where sir, tjp, and ukq are entries of S, T, and U, respec-
tively. The HOSVD (5) can be written as (A,B,C) · G,
where G ∈ RR×P×Q has entries grpq and is known as
the core array. Analogously, the CPD (4) can be written
as (A,B,C) · DR, where DR ∈ RR×R×R has entries
drrr = gr and zeros elsewhere. Hence, DR is a three-way
generalization of a diagonal matrix.

Next, we introduce the general form of the CPlimit decom-
position of the limit X . For R = 2 and two diverging rank-1
terms, there exists a decomposition X = (S,T,U) · G, with
G given by [3]

G =

[
∗ 0 0 ∗
0 ∗ 0 0

]
, (7)

where the 2×2 frontal slices of G are given side by side, and
∗ denotes a nonzero entry. Here, rank(X ) = rank(G) = 3,
and CPlimit has three rank-1 terms, which is one more than
the CPD with R = 2.

For R = 3 and three diverging rank-1 terms, there exists
a decomposition X = (S,T,U) · G, with G given by [25] ∗ 0 0 0 ∗ 0 0 0 ∗

0 ∗ 0 0 0 ∗ 0 0 0
0 0 ∗ 0 0 0 0 0 0

 . (8)

We have rank(X ) = rank(G) = 5.
For R = 4 and four diverging rank-1 terms, there exists a

decomposition X = (S,T,U) · G, with G given by [26]
∗ 0 0 0 0 ∗ 0 0 0 0 ∗ 0
0 ∗ 0 0 0 0 ∗ 0 0 0 0 ∗
0 0 ∗ 0 0 0 0 ∗ 0 0 0 0
0 0 0 ∗ 0 0 0 0 0 0 0 0

0 0 0 ∗
0 0 0 0
0 0 0 0
0 0 0 0

 . (9)



We have rank(X ) = rank(G) ≥ 7.
For groups of more than four diverging rank-1 terms,

the decomposition form for the limit X may be obtained
analogous to the proof for R = 4 in [26]. Considering the
forms of G above, it may not be surprising that these can be
seen as three-way generalizations of Jordan blocks [26].

When not all rank-1 terms are diverging, or multiple
groups of diverging rank-1 terms occur, [25] [26] proposes
the following CPlimit decomposition of X . Each group of dj
diverging rank-1 terms converges to its own limit Xj with
its respective CPlimit decomposition Xj = (Sj ,Tj ,Uj) · Gj ,
where Gj has size dj × dj × dj . For dj ∈ {2, 3, 4} the
form of the CPlimit decomposition of Xj is as described
above. Each nondiverging rank-1 term stays nondiverging
in the limit, and corresponds to a dj = 1. The complete
CPlimit decomposition of X is given by X =

∑m
j=1 Xj =∑m

j=1(Sj ,Tj ,Uj) · Gj , and can be seen as a three-way
generalization of the Jordan canonical form for matrices [26].

As an example, suppose R = 3 and we have one group
of two diverging components. The limit X then has CPlimit

decomposition X = X1+X2, where X1 = (S1,T1,U1) · G1
with G1 as in (7) being the limit of the two diverging rank-
1 terms, and X2 = g3 (s3 ◦ t3 ◦ u3) being the limit of the
nondiverging rank-1 term. Hence, the CPlimit decomposition
of X is of the form

X = g111 (s1◦t1◦u1)+g221 (s2◦t2◦u1)+g122 (s1◦t2◦u2)

+g3 (s3 ◦ t3 ◦ u3) . (10)

The assumption of [25] [26] that groups of diverging rank-
1 terms each converge to their respective limits, is con-
firmed by simulation studies. The limit X and its CPlimit

decomposition may be obtained by fitting the appropriate
CPlimit form to the data Z . For this, the alternating least
squares algorithm [11] for fitting a constrained HOSVD (5)
can be used. Matlab codes are available online for finding
the correct form of CPlimit, obtaining initial values, and
fitting it to a dataset that yields diverging rank-1 terms; see
http://www.gmw.rug.nl/∼stegeman.

V. APPLICATION TO TV-RATINGS DATA

We apply the approach above to a well-known three-
way dataset for which diverging rank-1 terms occur. The
data consist of ratings of 15 American TV shows on 16
rating scales, made by 40 subjects in 1981. The subjects
were introductory psychology students at the University
of Western Ontario, Canada, who were familiar with the
shows. After deleting subjects with missing data, we keep
30 persons. The data are previously analyzed by [17] and
also feature in [8].

Appropriate component models for the TV-ratings data are
the CPD with R = 3 or the HOSVD with R = P = 3 and
Q ∈ {1, 2, 3} [28]. Fitting the CPD with R = 2 yields a “Hu-
mor” component and a “Sensitivity” component. Fitting the
CPD with R = 3 yields a similar “Humor” component and
two diverging rank-1 terms. Imposing orthogonality among
the TV show components yields “Humor”, “Sensitivity”,

and “Violence” components. Three similar components are
obtained by fitting the HOSVD models, which also impose
orthogonality. However, orthogonality between “Sensitivity”
and “Violence” does not seem intuitive. Also, fitting the
HOSVD involves applying a rotation to an interpretable
solution. This results in many small rank-1 terms next to
the three main components.

Next, we fit the CPlimit decomposition for R = 3 and
two diverging rank-1 terms, which is of the form (10)
and does not impose orthogonality. The same nondiverging
“Humor” component is obtained (term four in (10)), as well
as “Sensitivity” and “Violence” components (terms one and
two in (10)). The third term in (10) is small and represents an
interaction between “Sensitivity” and “Violence”. Hence, the
CPlimit decomposition is interpretable and does not impose
the unintuitive constraint of orthogonality [28]. Also, con-
trary to the HOSVD models, CPlimit contains only one small
rank-1 term. All appropriate models have fit percentages
around 50, so the choice for a model boils down to the
form of the model itself. It is clear that CPlimit has the most
desirable properties for the TV-ratings data.

The uniqueness properties of the CPlimit decomposition
in (10) are not the same as for the CPD. Although the
nondiverging rank-1 term is unique, there is some transfor-
mational freedom within the first three terms of (10) [25]
[28]. However, this transformational freedom can be fixed by
applying standard rotation criteria and this does not change
the interpretation of CPlimit for the TV-ratings data [28].
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