The Nature of the Beast



This research is supported by NWO-SWON Grant 613-03-039.



Rijksuniversiteit Groningen

The Nature of the Beast

Analyzing and Modeling
Computer Network Traffic

Proefschrift

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. D.F.J. Bosscher,
in het openbaar te verdedigen op
vrijdag 3 mei 2002
om 16.00 uur

door

Albertus Wilhelmus Stegeman

geboren op 25 juni 1975
te Deventer



Promotores:

Beoordelingscommissie:

ISBN 90-367-1598-9

Prof. dr
Prof. dr

Prof. dr
Prof. dr
Prof. dr

. H.G. Dehling
. T. Mikosch

. 0.J. Boxma
. W. Schaafsma
. M.S. Taqqu



CY

Every ending carries within itself a new beginning






Contents

1 Introduction
1.1 Computer networks . . . . . . . . ... ... oo
1.2 Measurements of computer network traffic . . . . . ... ... ..
1.3 Statistical analysis of traffic measurements . . . . . . . ... ...
131 Heavytails . .. ... ... ... L
1.3.2 Long-range dependence . . .. ... .. ..........
1.3.3 Non-stationarity or long-range dependence? . . . . . . . .
134  Self-similarity . . . . . .. .. ... L
1.3.5 Multifractals . . . . . .. ... ...
1.3.6 Computer networks versus the telephone system . . . . .
1.4 Modeling the workload in computer networks . . . . . ... ...
1.4.1 Intuitive explanations . . . .. ... ... ... .. ....
1.4.2 Mathematical explanations . . . ... ... ........
1.5 Outline of the thesis . . . . . . . ... ... ... ... ...,
1.5.1 The Nature of the Beast . . . . . ... ... .. ......

2 Computer Networks
2.1 Network hardware . . . ... ... .. .. ... ..........
2.1.1 Local Area Networks (LANs) . . ... ... ... .....
2.1.2 Wide Area Networks (WANs) . . ... ... .. ... ...
2.1.3 Inter Networks . . . . .. ... .. ... .. ........
2.2 Network software . . . . . .. .. .. ...
2.3 Protocolsin the Internet . . . . . . . . . ... ... ... ...
2.3.1 Connection-oriented versus connectionless . . . . . . . ..
2.3.2 The Internet network layer . . . . . ... ... ... ...
2.3.3 The Internet transport layer. . . . . . ... .. ... ...
24 ATM networks . . . . .. .. . . .. L

3 Mathematical Concepts
3.1 Heavytails . . ... ... ...
3.1.1 Definition and examples . . . . . . ... ... ... ...,
3.1.2 Detecting heavy tails . . . . . . . ... ... .
3.1.3 Stable Lévy motion . . . ... .. ... ... ... ...
3.2 Long-range dependence . . ... ... ... ... ...,

vii



3.3

3.2.1
3.2.2
3.2.3

Definitions . . . . ... ... ... .. ... .. ...
Proofs . . . . . . . . . . ..
Detecting long-range dependence . . . . . . ... ... ..

3.2.4 Application to the Bellcore data . . ... ... ......
3.2.5 Long-range dependence or non-stationarity? . . . . . . ..
3.2.6 ARIMA models and long-range dependence . . . ... ..
3.2.7 Fractional Brownian motion . . . . . . .. .. .. ... ..
Self-similarity . . . . . . . . .. ..
3.3.1 Definition . . .. ... ...
3.3.2 Self-similarity ‘by picture’ . . . . . .. .. ...

4 Traffic Data Analysis
OVerview . . . . . o o e e e e e
LRD or ARIMA? . . . . . . e

4.1
4.2

4.3

4.2.1
4.2.2
4.2.3

Two goodness-of-fit tests . . . . . . ... .. ... ....
Fitting BC-pAug to an ARIMA model . . . . .. ... ..
Analysis of other workload series . . . .. . ... .....

Visualizing non-stationarity . . . ... ... ... ... ......

5 Modeling Computer Network Traffic
5.1 Heavy tails as the cause of LRD . . . ... ... .........

6

5.2

5.3

5.A

5.B

5.C
5.D

5.1.1
5.1.2
5.1.3
5.1.4

LAN traffic: the ON/OFF model . . . . ... ... ....
The ON/OFF model and reality . . ............
WAN traffic: the infinite source Poisson model . . . . . .
The infinite source Poisson model and reality . . . .. ..

Self-similar limits . . . . . . . . . . . ... . ...

5.2.1
5.2.2
5.2.3

Convergence to fractional Brownian motion . . . . . . ..
Convergence to stable Lévy motion . . . . . . .. ... ..
Simultaneous limit regimes . . . .. . ... ... ... ..

Network performance — a discussion . . .. ... .........

5.3.1
5.3.2

Queuing results . . . . . ... oo oL
Simulation studies . . . . ... ... ... ...

Proof of Theorem 5.5: Slow Growth . . . ... ... .. .....
5.A.1 The basic decomposition . . . . . .. ... . ... ... ..
5.A.2 Vanishing remainder terms . . . .. ... ... ... ...
5.A.3 Convergence of the marginal distributions . . . . ... ..
5.A.4 Convergence of the finite-dimensional distributions . . . .
Proof of Theorem 5.5: Fast Growth . . . . . ... ... ... ...
Large deviations of heavy-tailed sums . . . . ... ... ... ..
Bounds for regularly varying functions . . . . .. ... ... ...

Extremal Behavior of ON-Periods

6.1 Slow Growth . . . . . . .. . . ... ... ...
6.2 Fast Growth. . . .. .. ... . ... ... .. .. . .. ... ...
6.3 A Central Limit Theorem . . ... ... ... ... ........
6.A Proof of Theorem 6.1 . . . ... ... . ... .. ... .......



6.B Proof of Theorem 6.3
6.C Proof of Theorem 6.5

6.D Convergence to a simple point process

6.E An identity in law for stopped random sums . . . . . ... .. ..

Bibliography
Summary
Samenvatting

Dankwoord

ix

151

155

159






One

Introduction

The key technological achievements of the last century were in the area of in-
formation and communication. Examples are the installation of worldwide tele-
phone networks, the invention and widespread use of radio and television, the
explosive developments in the computer industry and the launching of com-
munication satellites. Due to fast technological progress the ability to gather,
process and distribute information has grown rapidly. As a consequence, the
demand for more sophisticated information processing systems has increased.
This, in turn, has stimulated scientific research in this direction. The subject
of this thesis is an example of such research: it considers the statistical analysis
and modeling of data traffic in computer networks.

As surely anyone has experienced, the operation of transferring data between
two computers in a network does not always end in success. Especially on the
worldwide Internet, with hundreds of millions of users and many different kinds
of applications, long delays and failing attempts to establish a connection are
not uncommon. Among the research disciplines involved in examining and im-
proving the performance of computer networks, statistics and mathematics play
an important role. Since the beginning of the 1990s a large number of empirical
studies of network traffic measurements has seen the light. The main conclu-
sion of this body of work seems to be that the workload in computer networks is
characterized by long-range dependence and self-similarity. Here, the workload
is often defined as the number of bytes flowing through (a particular point in)
the network per time unit. Also, it has been observed that transmission dura-
tions and file lengths seem to follow a heavy-tailed distribution. In general, these
three canonical properties are believed to mark the difference between computer
network traffic and voice traffic in the traditional telephone network. Attempts
to incorporate these features in a mathematical framework have yielded two
popular models for the workload in computer networks: the ON/OFF model
and the infinite source Poisson model. Using these models, it has been estab-
lished that the above characteristics of computer network traffic are responsible
for lower network performance, as compared to the telephone system, in terms
of queuing and delay statistics.

This introductory chapter provides the framework within which this thesis



has been written. In Section 1.1 we briefly introduce the technology and termi-
nology of computer networks. Section 1.2 describes various data sets that can be
obtained from measurements of computer network traffic. Section 1.3 introduces
the concepts of heavy tails, long-range dependence and self-similarity and dis-
cusses their presence in traffic measurements on computer networks. Section 1.4
provides a glance at the ON/OFF model and the infinite source Poisson model,
in which the characteristics of computer network traffic have been incorporated.
Finally, Section 1.5 gives an outline of the rest of the thesis.

1.1 Computer networks

A computer network is a collection of computers that are able to exchange in-
formation. Computer networks are often classified by their scale. In general,
three types are distinguished: Local Area Networks (LANs), Wide Area Net-
works (WANs) and Inter Networks. LANs are privately-owned networks within
a single building or campus of up to a few kilometers in size. A WAN spans a
large geographical area, like a country or a continent. It contains two types of
machines: hosts and routers. Hosts are intended for running user programmes
(i-e. applications), while routers are used as intermediate machines for data sent
by one host to another host. An Inter Network is a collection of interconnected
networks, e.g. a number of LANs connected by a WAN. The best known ex-
ample of an Inter Network is the Internet, which spans the whole planet. The
most popular application on the Internet is the World Wide Web (WWW), a
system of interlinked sites on which information (in the form of text, pictures,
sound and video) is displayed.

Data is transmitted between computers in a network in the following way.
The sending computer is referred to as the source computer, while the receiver
of the data is known as the destination computer. When a file is sent from
a source to a destination in the network, the various layers in the network
software decompose the file into small packets. These packets are sent through
a physical medium (e.g. copper wire or fiber optics) to the destination computer.
When arrived without transmission errors, the network software puts the packets
together and thus reconstructs the original file. The duration of the whole
transmission depends on the size of the file, the speed allowed by the physical
medium (i.e. the bitrate or bandwidth), the occurrence of transmission errors
(the packets that are damaged or lost during the transport have to be sent
again) and the state of the network, e.g. congestion, queues, defects, etc. The
network software includes algorithms that collect information on the amount
of congestion and queuing in the network and accordingly adapt the rate at
which data is sent from the source computer. In this way, an attempt is made
to prevent packet losses due to, for example, buffer overflows. The most well-
known of such algorithms is the Transmission Control Protocol (TCP), which
is used in the Internet and most WANSs. It sets up a connection between the
source and destination hosts and, depending on states of the destination host
and the intermediate routers, determines the sending rate. A disadvantage
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of the reliable transmission service offered by TCP is that the transmission
duration is increased. For some applications, however, speed is more important
than maintaining high quality (e.g digitized voice or video) and an ‘unreliable’
service, i.e. without setting up a connection as above, is more appropriate. In
the Internet this service is offered by the User Datagram Protocol (UDP).

1.2 Measurements of computer network traffic

We distinguish two categories of measurements of computer network traffic:
those taken at the application level and those taken at the packet level. At the
application level the variables of interest are, for example, file sizes, connec-
tion durations, transmission durations, the number of files requested from a file
server or the number of hits on a website. At the packet level, information is
gathered on the packet stream flowing through a link or cable in the network.
All information obtained during the measurement period (ranging from a few
hours up to several weeks) comprises the so-called trace. For example, a trace
can contain the size, timestamp, source host address and destination host ad-
dress of each packet, as well as whether the packet is controlled by the TCP
or UDP algorithm and other application-specific information. To give an idea
of the huge quantities of data that are obtained in this way, consider the mea-
surements on the LAN at the Bellcore company in August 1989: in less than 53
minutes already 1.000.000 packets were captured (packet sizes are between 64
and 1518 bytes). Still, with an operating speed of 10 Mbps (Mbps = Megabit
per second, i.e. 1.000.000 bits per second) this network is among the slowest
ones around today.

From a trace, one can obtain several different data sets. The local behavior
of the traffic, by which we mean the traffic at small time scales, can be analyzed
by considering packet inter-arrival times, idle times and packet sizes. An idea of
the global behavior of the traffic at the measurement point can be obtained by
counting the number of bytes or packets per time unit (e.g. 10 milliseconds or
1 second). The resulting time series is called the workload. Notice that ‘global’
refers to aggregation of the traffic over time. In Figure 1.1 a plot of the number
of bytes per second passing the measurement point on the Bellcore LAN can be
seen. If the source and destination of each packet are recorded in the trace, then
one can consider the traffic between separate source-destination pairs. Also,
traffic generated by different applications can be distinguished (provided this
information is contained in the trace).

For analyzing local behavior it is important that the timestamps are suffi-
ciently accurate. The inter-arrival and silent (or idle) times are computed from
differences in the timestamps of consecutive packets. Consider for example the
first 1 million packets of the Bellcore measurements (available in the Internet
Traffic Archive [49]). Let the timestamp ¢; mark the end of packet i, ¢; denote
the packet size in bytes and s; the silence time between packets ¢ and ¢ + 1.
Since 1 byte consists of 8 bits and the network has a speed of 10 Mbps, 1 byte
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Figure 1.1: Graph of the number of bytes arriving per second on the Bellcore
LAN.
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The silence times s; can now be obtained from

=8-10"" seconds.

i =141 —t; — 8 qit1 - 1077. (1.1)

The Ethernet protocol running on the Bellcore LAN imposes a minimum silence
time between two packets of 52.6 us (us = microsecond, i.e. 107% seconds).
Using (1.1) for calculating silence times from the Bellcore trace, however, results
in 12 percent of the s; being smaller than the minimal 52.6 us. Apparently, the
accuracy of roughly 10 us of the timestamps is not good enough.

The following schedule gives an overview of the various types of measure-
ments we discussed above.

I Application level
* file sizes, connection durations, transmission durations
IT Packet level (traces)

1 local data
* inter-arrival times, silent times, packet sizes
2 global data

* packet counts, byte counts




1.3 Statistical analysis of traffic measurements

Computer network traffic is believed to be characterized by heavy tails, long-
range dependence and self-similarity. Here, we briefly introduce these notions
and provide a glance at the statistical evidence of their presence in traffic mea-
surements.

1.3.1 Heavy tails

Consider a positive random variable X with distribution function F' and right
tail .
F=1-F.

We say that X (or F) has a heavy tail if for © — oo,
P(X > z) = F(x) ~ (const) 27,

where ~ means that the ratio of the two sides tends to 1 as z — oo and a € (0, 2)
(a more general defnition will be given in Section 3.1.1). If X has a heavy tail
then Var(X) = oco. Moreover, if a < 1 then also E(X) = co. The tails of the
distribution of a random variable contain information about the probability of
observing values far from the median. Compared to the exponential distribution

PE>z)=e ™, A>0, >0,

a heavy-tailed distribution has much more variability in the sense that values
far from the median are more likely to occur.

In practice, exploratory graphical methods are used to detect the presence of
heavy tails. We will discuss some of them in Section 3.1.2; see also Resnick [79].
In computer networks heavy tails have been observed at both the application
level and the packet level. Crovella and Bestavros [20, 21] analyze file requests in
the WWW and find evidence of heavy tails in the distributions of file lengths,
connection durations and idle periods (i.e. times when a workstation is not
receiving data). Paxson and Floyd [70] analyze Telnet connections and FTP
sessions on WANs. They find that Telnet packet inter-arrival times within a
Telnet connection and FTP data burst lengths within an FTP session are heavy-
tailed. Finally, Willinger et al. [106] consider the traffic between individual
source-destination pairs in the Bellcore LAN. For most source-destination pairs
they observe heavy-tailed distributions of the activity periods (i.e. when the
source is sending data to the destination) and idle periods.

1.3.2 Long-range dependence

For a weakly stationary, and, hence, finite-variance stochastic process (X¢, t =
0,+1,+2,...) dependence between observations at times ¢ and ¢ + k is usually
measured by the autocorrelation function (ACF) p at lag k, i.e.

(k) _ COV(AXVt7 Xt+k) _ COV(X(], Xk)
PR = Var(X;)  Var(Xy) ’

k=0,+1,42, ...
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By plotting p(k) against k one can gain an idea of the second order dependence
structure of the process. Naturally, one expects that |p(k)| decreases as k in-
creases. The notion of long-range dependence (LRD) refers to the relative size
of p(k) at large lags k. If p is non-negligible at large lags, we have dependence
over a long range of sequential observations. Here, we say that a stationary
process has LRD if for £ — o0,

pk) ~ ¢ k7, (1.2)

where ¢, is a positive constant and § € (0,1). Other definitions will be dis-
cussed in Section 3.2.1; see also Beran [4]. In contrast to short-range dependent
processes (e.g. ARMA) p(k) does not decay at an exponential rate, but as a
power function. In Figure 1.2 the sample ACF of the number of packets arriving
per second on the Bellcore LAN is depicted. Clearly, the graph lies outside of
the 95 percent confidence bands around zero for a large number of lags. For
comparison we simulated a Poisson arrival process with the same mean inter-
arrival time and plotted the sample ACF of the number of arrivals per second.
In this case, the autocorrelations can hardly be distinguished from zero.

10
L
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Figure 1.2: Sample autocorrelations of the number of packets arriving per second
on the Bellcore LAN (left) compared to those of the number of arrivals in a
realization of a mean-matched Poisson arrival process.

Several heuristic graphical tools are used to detect LRD in a time series.
We will discuss some of them in Section 3.2.3 (see also Beran [4]). A statistical
evaluation of these exploratory methods can be found in Taqqu and Teverovsky
[99, 100]. For a wavelet based method, see Abry and Veitch [1]. In computer
networks, LRD has been detected in various time series obtained from mea-
surement traces. Abry and Veitch [1] find evidence of LRD in the sequences of
inter-arrival times, silence times and packet sizes of the Bellcore measurements.
Cao et al. [16] analyze several traces of Internet packets and conclude that LRD
is present in the inter-arrival times and packet sizes. Also, LRD has been ob-
served in packet and byte counts in the Bellcore LAN (Leland et al. [60], Abry
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and Veitch [1]) and in various WANs (Paxson and Floyd [70]). Finally, Beran
et al. [5] find LRD in byte counts obtained from traces of video traffic.

1.3.3 Non-stationarity or long-range dependence?

It is clear that the concept of LRD, as given by (1.2), only applies to weakly
stationary stochastic processes. However, no general test for the stationarity
of an observed time series is available. Also, the graphical methods that are
often used to detect LRD in a time series are not very reliable. For example,
it has been observed in the literature that non-stationarities like shifts in the
mean or a slowly decaying trend can also be the cause of such slowly decaying
autocorrelations as in Figure 1.2 (left).

When determining whether it is reasonable to consider a measured work-
load series as stationary or not, the level of aggregation, i.e. the time unit
used to define the workload, and the length of the series of measurements play
an important role. At different time scales different factors may induce non-
stationarities in the measurement series. These factors include yearly, monthly,
weekly and day-of-week effects and the diurnal cycle, describing fluctuations
during 24 hours. Usually a portion of the measurements containing not more
than one hour of data traffic is considered and the workload is defined per se-
cond. The implicit assumption is that “traffic is stationary over short periods”.
Obviously, all effects mentioned above are eliminated in this way. However, also
within one hour stationarity is not guaranteed. Apart from system crashes or
other ‘shocks’, a changing number of active connections may be a reason to get
worried. Since, in the latter case, the traffic is a superposition of a varying
number of data streams, this may result in a shifting mean of the process and,
hence, give rise to slowly decaying autocorrelations. A way around this would
be to consider even shorter time intervals like 5 minutes and to make sure that
the number of active connections is fairly stable during this period. But then
one might argue that within each connection data is sent in bursts rather than
at a fixed rate and, hence, the traffic still behaves in a non-stationary way.

Although the issue of non-stationarity is often settled with only a few words,
it is worth a more detailed consideration. This will feature in Sections 3.2.5—
3.2.6 and 4.2-4.3.

1.3.4 Self-similarity

A stochastic process (X, t > 0) is said to be self-similar if the finite-dimensional
distributions of (X4;) and (a® X;) are identical for any a > 0 and some H €
(0,1), i.e. if

(Xat, t>0) 2 (@ Xy, t>0).

Hence, the distribution of a self-similar process is invariant under a particular
scaling of time and space. The parameter H is called the index of self-similarity.
The concept of self-similarity became popular due to the work of Mandelbrot
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and his co-workers, see e.g. [62, 64]. A thorough mathematical description of
self-similarity is given in Samorodnitsky and Taqqu [89].

Workload measurements in computer networks (i.e. packet or byte counts)
show a high level of variability on every time scale that is considered, from
milliseconds to minutes. For the Bellcore measurements this conclusion is drawn
by Leland and Wilson [59] and Fowler and Leland [34]. In Leland et al. [60]
and Willinger et al. [106] the variability of the workload on the Bellcore LAN
is shown to be roughly the same on five different time scales. This invariance
under scaling in time and space is taken to be evidence of self-similarity in the
workload measurements. In Figure 1.3 we show the number of packet arrivals in
the Bellcore LAN per 10 seconds and per 0.1 second. As we see, the amount of
variability does not decrease much at the aggregated level. This is in contrast
to the number of arrivals governed by a simulated Poisson process. At the
10-second level the number of arrivals is approximately equal to its mean rate.

T T T T T T T T T T T T T T
0 50 0

Figure 1.3: The number of (packet) arrivals per time unit on the Bellcore LAN

100 150 200 250 300 50 100 150 200 250 300
(left) and in a realization of a mean-matched Poisson process (right).
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1.3.5 Multifractals

It has been observed that the scaling properties of the workload in WANs at
small time scales (roughly below 100 milliseconds) differ from those at larger
time scales. While in the latter case the scaling can be described by self-
similarity, in the former one it is more complex. The scaling parameter H cannot
be taken constant throughout the whole measurement period. This conclusion
is drawn by Feldmann et al. [30, 31], Riedi and Lévy-Véhel [84] and Gilbert
et al. [36]. It has been suggested that the workload at small time scales can
be described by the class of so-called conservative cascades. This class consists
of multiplicatively generated multifractal processes that can incorporate more
complex scaling behavior than self-similar (or monofractal) processes. Analysis
of conservative cascades using wavelets is considered in Riedi [85] and Resnick
et al. [81].

It is believed that the multifractal scaling property of the workload at small
time scales is caused by the multiplicative nature of the TCP algorithm operat-
ing on the WANSs under consideration. An effort to give a mathematical descrip-
tion of this multiplicative structure can be found in Resnick and Samorodnitsky
[83]. At larger time scales the multiplicative effects are dominated by the ad-
ditive properties of network traffic (i.e. aggregating the workload generated by
different sources or connections) and self-similar scaling behavior is observed.
For an overview of the scaling phenomena of the workload, both at small and
large time scales, see Riedi and Willinger [86].

In this thesis, however, the multifractal scaling properties of the workload
are beyond our consideration. This section is included for completeness only.

1.3.6 Computer networks versus the telephone system

The statistical properties of computer network traffic differ significantly from
those of voice traffic in the telephone system (see e.g. Fowler and Leland [34]
or Willinger and Paxson [107]). Telephone calls can be modeled by a Poisson
process, i.e. their inter-arrival times are roughly exponentially distributed. The
lengths of telephone calls have an exponentially bounded right tail. This implies
that the autocorrelations of the network workload decrease exponentially in the
time between observations. Moreover, on a sufficiently large time scale the
workload smooths out, i.e. the number of call arrivals is approximately equal
to the long-term arrival rate of the Poisson process.

As we have seen above, these properties are not observed in computer net-
work traffic. On the contrary, file lengths, transmission durations and connec-
tion lengths and are heavy-tailed, workload processes exhibit LRD and show
‘burstiness’ across an extremely wide range of time scales (i.e. traffic does not
smooth out). Therefore, computer networks are a far greater challenge to an
engineer than the telephone system.



1.4 Modeling the workload in computer networks

1.4.1 Intuitive explanations

At the application level, file sizes, connection lengths and transmission durations
are found to be heavy-tailed. Given constant bitrate transmission the heavy-
tailed connection lengths and transmission durations can be explained by the
heavy-tailed file sizes. Also, the heavy-tailed file sizes are related to the LRD
observed in packet inter-arrival times, silent times and packet sizes. For example,
suppose a source is transmitting an extremely large file to a destination host.
Due to the observed heavy-tails the probability of extremely large files is non-
negligible. Before transmission, the file is decomposed into small packets, on
which the bandwidth of the physical medium imposes a certain maximum packet
size. Since the file is extremely long it is most efficient if it is decomposed into
packets of this maximum size. Hence, a long stream of packets of the same size
occurs. Moreover, if there is no interference from other transmissions, the inter-
arrival times and silence times between the packets will also be the same. This
explains how the transmission of extremely large files causes dependence over
a long range of observations (i.e. LRD) in the sequences of packet inter-arrival
times, silent times and packet sizes.

The reasoning above is not necessarily valid when the traffic between several
independent source-destination pairs is considered. This procedure is known as
multiplexing. Cao et al. [16, 17] argue that multiplexing weakens the dependence
in the packet sequences, since data bursts of several sources interfere and disturb
the regular pattern observed when transmitting a single extremely large file.
Analyzing several traces from LANs and ATM networks, [16, 17] observe that
the sequences of packet sizes inter-arrival times change from LRD to independent
if the average number of connections (i.e. data streams) increases.

The regular patterns observed when transmitting extremely long files can
also explain the LRD in sequences of packet and byte counts. Cao et al. [16, 17]
find that at this aggregated level the effect of multiplexing on the dependence
structure of the workload is less pronounced.

1.4.2 Mathematical explanations

The idea of heavy tails as the cause of LRD in workload measurements has been
captured in two popular models. The first one is the ON/OFF model proposed
by Willinger et al. [106]. Here, traffic is generated by M independent and
identically distributed ON/OFF sources. If a source is ON it transmits data
at unit rate (e.g. 1 byte per time unit). If it is OFF it remains silent. In this
way, an individual ON/OFF source generates a binary ON/OFF process W,
where W; = 1 if at time ¢ the source is ON and W; = 0 if the source is OFF
at time ¢. The lengths of periods in which the source is ON, the ON-periods
X;, are independently drawn from a heavy-tailed distribution. Analogously, the
OFF-periods Y; are also heavy-tailed. The X- and Y-sequences are assumed
independent. It has been shown by Heath et al. [45] that the stationary ver-
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sion of the ON/OFF process W; exhibits LRD. Moreover, since the M sources
are independent, the sum of their ON/OFF processes, i.e. the total workload
generated by the M sources, also exhibits LRD.

In the second model, the infinite source Poisson model, the number of sources
in the network is taken infinite. Traffic is generated by independent connections
arriving according to a Poisson process, i.e. with exponential inter-arrival times.
During a connection, traffic is generated at unit rate. The lengths of the con-
nections are independent and taken from a heavy-tailed distribution. Also, the
connection lengths are independent from the connection inter-arrival times. Cox
[19] shows that the workload process generated by this model exhibits LRD.

So far we have not offered an explanation for the supposed self-similarity in
network traffic. In probability theory a self-similar process can be understood
as a weak limit of a sequence of scaled and time-dilated processes (see Lamperti
[58]). Such limit theorems have been proved for the cumulative workload pro-
cesses in the ON/OFF- and infinite source Poisson model and will be dealt with
in Chapter 5.

1.5 Outline of the thesis

e Chapter 2 follows Tanenbaum [96] and is an introduction into the ter-
minology, hardware and software of computer networks. In Section 2.1
we discuss network hardware and focus on the differences between LANS,
WANSs and Inter Networks. This is followed by a closer look at network
software in Section 2.2. To facilitate network design the software is orga-
nized as a series of layers with different functions. The purpose of each
layer is to offer a service to the one above it. We describe the process
of data transmission as a journey through the layers of the network. In
Section 2.3 we focus on the software in the Internet, in particular on the
Internet Protocol (IP) and the TCP algorithm. Finally, Section 2.4 intro-
duces a relatively new class of networks, the ATM networks.

e In Chapter 3 we discuss in detail the concepts of heavy tails, long-range
dependence and self-similarity. In Section 3.1 we describe several classes
of heavy-tailed distributions and discuss two graphical methods to detect
heavy tails in a random sample: the log-log complementary distribution
plot and the Hill plot. Section 3.2 provides various definitions of LRD
and proves their equivalence. Four exploratory tools are discussed to de-
tect LRD: the log-log correlogram, the log-log periodogram, the log-log
variance-time plot and the R/S method. Also, we apply them to the
Bellcore measurements. Next, we address the issue of non-stationarity as
the cause of LRD-like phenomena. We show that applying the four ex-
ploratory methods above to a realization from a non-stationary ARIMA
model is likely to yield the conclusion that LRD is present in the data.
In Section 3.3 we define self-similarity and also discuss the concept of
second-order self-similarity coined by Cox [19]. A common method to ob-
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serve self-similarity is to plot the data on a wide range of time scales. If
the relative variability remains roughly the same evidence is said to be
found for self-similar scaling behavior. We show that this conclusion can
also be drawn when ‘zooming in’ on a realization from an ARIMA model.

Chapter 4 is devoted to the statistical analysis of computer network traffic.
In Section 4.1 gives an overview of the relevant measurement studies in
the literature. Section 4.2 is based on Stegeman [95]. Here, we provide
our own analysis of sequences of workload measurements, including the
Bellcore measurements, several traces WAN traffic available in the Internet
Traffic Archive [49] and measurements on an ATM network. We show that
most workload series can be modeled by a non-stationary ARIMA (p,1,q)
model, with small values of p and q. Hence, it is virtually impossible
to distinguish between LRD and non-stationarity. Section 4.3 takes a
closer look at the sequence of packet sizes in the Bellcore measurements
of August 1989. It appears that several roughly uncorrelated groups of
packet sizes can be distinguished, each group being generated by a different
process or application running on the Bellcore LAN at the time of the
measurements. Examining the arrival processes of packets of fixed sizes
leads to the conclusion that they are not consistent with the assumption
of stationarity.

In Chapter 5 we consider the modeling of computer network traffic. In
Section 5.1 we provide a detailed definition of the ON/OFF- and infinite
source Poisson model, as well as a discussion of their relation to actual
networks. In Section 5.2 we present limit theorems for the cumulative
workload process in the ON/OFF model, with two parameters converging
to infinity: the number of sources M and the time-dilation parameter 7.
Depending on the order in which the limits are taken, the limit process is
either stable Lévy motion or fractional Brownian motion (see Willinger et
al. [106] and Taqqu et al. [101]). Both of these processes are self-similar,
but the former has independent increments while the latter has an LRD
increment process. Next, we present a result in which simultaneous limit
regimes of M and T are considered. The relative growth rate of M with
respect to T" determines which process is obtained in the limit. If M grows
‘fast’ the limit process is fractional Brownian motion, while under ‘slow
growth’ convergence to stable Lévy motion can be shown. The proof of
this theorem is presented in the Appendix of Chapter 5 and can also be
found in Mikosch and Stegeman [65]. A preliminary analysis was done in
Stegeman [92]. See Stegeman [93] for an overview of convergence results
for the cumulative workload to self-similar limits. In Mikosch et al. [66]
the special case when the ON-periods have a ‘heavier tail’ than the OFF-
periods is considered. The paper [66] combines convergence results for the
cumulative workload in both the ON/OFF- and infinite source Poisson
models and grew out of two different projects, each focusing on one of
the two models. Convergence results for the cumulative workload in the
infinite source Poisson model are also included in Section 5.2. Finally,
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in Section 5.3 we discuss some queuing results and simulation studies to
illustrate the effect of the characteristics of computer network traffic on
network performance.

e Chapter 6 is based on Stegeman [94]. We use the framework of the
ON/OFF model to study the number of ON-periods up to time T exceed-
ing a high threshold. Again, we consider simultaneous limits of M and T'.
Moreover, also the threshold depends on 7. We distinguish between the
‘slow’ and ‘fast’ growth conditions on M. Although different approaches
are needed, in both cases we are able to show that the number of ex-
ceedances converges to a Poisson random variable if the threshold satisfies
a balancing condition (guaranteeing a constant number of exceedances in
the limit). The ‘slow growth’ case is dealt with in Section 6.1, while Sec-
tion 6.2 considers the ‘fast growth’ situation. In Section 6.3 we show that
the number of exceedances satisfies the Central Limit Theorem. Here, we
do not need to impose a condition on the growth rate of M with respect to
T. The only requirement is that the number of exceedances is increasing
as T — 0o0. The proofs of the above results are presented in the Appendix
of Chapter 6.

1.5.1 The Nature of the Beast

With its wild behavior the workload in computer networks does not obey the
standard assumptions of the Poisson process. It seems that a new class of
models incorporating heavy tails and exhibiting LRD is needed to capture its
nature. However, also here problems arise. For example, the issue of LRD
versus non-stationarity, the influence of multiplexing on traffic characteristics
and the question as to whether the scaling of network traffic is multifractal or
self-similar. With respect to the last issue, it has been observed that multifractal
scaling behavior occurs at small time scales while at larger time scales traffic
seems self-similar. However, a ‘physical’ model that incorporates both these
effects still has to be found.

Excursion: William Blake

The theme of reason trying to capture a wildly fluctuating and irregular phe-
nomenon can also be found in the work of the English poet, thinker and artist
William Blake (1757-1827). In Blake’s poetic theory several restraining forces
are identified which function as the circumference of the natural state of being
or reality. Being as such, they degrade the latter in quality to such a degree
that it is only a shadow of its true potential. According to Blake the restraining
forces must be constantly battled in order to avoid the horrid state of repression.
This war takes place in the physical and spiritual world as well as at the core
of the human psyche.

A few important restrainers in Blake’s work are the following. First, there is
sensory perception. According to Blake the world perceived by the five senses
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is regarded as pathetically limited. To overcome these limitations of sensory
perception man must use his power of creative imagination. Only those who are
artistically awakened, i.e. those who do not accept reality as given, are able to
obtain a vision of the world of delight that lies beyond the doors of perception.
A second restrainer is dogmatic rule or tyranny. Here, the repressed entity is
called human desire and a revolution to overthrow the repressive regime can only
be started if human desire is strong enough. The most important restrainer in
Blake’s work is Reason. In this case we may think of a rational model trying to
explain nature. But Reason can also act internally, e.g. the repression of human
desire by internalized rules. In general, Blake states that Reason functions as
a restrainer of what lies at the root of reality: Energy. Since Blake strongly
advocates the powers of creative imagination, desire and Energy, his view is
directly opposed to the scientific rationalism and mechanistic empiricism of his
contemporaries Newton, Locke and Rousseau.

In what is generally considered as his most inspired and original work The
Marriage of Heaven and Hell, Blake states (see [10], Plate 3):

Without Contraries is no Progression. Attraction and Repulsion,
Reason and Energy, Love and Hate, are necessary to Human exis-
tence.

From these contraries spring what the religious call Good & FEuwil.
Good is the passive that obeys Reason. Ewil is the active springing
from Energy.

Good is Heaven. Euvil is Hell.

This shows that Blake is not concerned with the static and inert state of victory
over the restraining forces, but rather with the vitality of the struggle between
Reason and Energy. In this sense, he opposes religion which focuses on the
victory of Good over Evil. Moreover, Blake regards the concepts of Good &
Evil merely as stale abstractions from the dynamic process of the interacting
Contraries.

Back to computer network traffic

Using the terminology of William Blake, the efforts of trying to find a model
incorporating all features of computer network traffic can be seen as a battle
between Reason (mathematical modeling) and Energy (the highly bursty nature
of traffic measurements). The fact that no suitable model has been found yet has
two implications. First, Reason and Energy continue their strife and Progression
is the result. Second, computer network traffic does not (yet) obey Reason and,
hence, belongs to the realm of Evil. In the Book of Revelations 13:11-18 Evil is
represented by the Beast. Hence, metaphorically, this thesis is an investigation
into The Nature of the Beast.
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Two
Computer Networks

Nowadays computers play a predominant role in the gathering, processing and
distribution of information. By linking computers together, i.e. building com-
puter networks, information can travel long geographical distances at low costs.
With the arrival of the Internet, information from all over the world is available
at the touch of a button.

By a ‘computer network’ we mean an interconnected collection of autono-
mous computers. Two computers are interconnected if they are able to exchange
information. With the autonomy requirement we exclude master /slave relation-
ships, such as a large computer with remote terminals.

Computer networks have many benefits. For companies Tanenbaum [96]
mentions the following points. The first issue is resource sharing: data is made
available without regard to the physical location of the resource and the user.
Also, by putting all files on two or three machines in the network, a high relia-
bility of information access is obtained. These machines are called file servers.
In this network, the users are called clients. They request the servers for infor-
mation or to do some other job. The server performs these tasks and replies. An
advantage of this so-called client-server model is that it is cheaper than having
a large mainframe computer with remote terminals, since small computers have
a better price/performance ratio than large ones. Finally, computer networks
are a powerful communication medium among widely separated employees.

With the coming of the World Wide Web as one of the applications on the
Internet, private individuals are also able to benefit from computer networks.
They have access to remote information and are able to engage in person-to-
person communication through e-mail and in chatrooms. There are worldwide
newsgroups where people can exchange messages with like-minded individuals.
Also, interactive entertainment is available.

Next we focus on the technical issues in computer network design. In Sec-
tions 2.1 and 2.2 we discuss network hardware and network software, respec-
tively. We specifically deal with the Internet in Section 2.3. Finally, in Sec-
tion 2.4 we consider ATM networks. For this chapter we closely follow Tanen-
baum [96] both in wording and presentation.
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2.1 Network hardware

Computer networks are often classified by their transmission technology and
scale. There are two types of transmission technology. In broadcast networks
there is a single communication channel that is shared by all the machines on
the network. A message, called a packet, sent by any machine is received by all
the others. An address field within the packet specifies the destination. When
a machine receives a packet, it checks the address field. The packet is ignored if
it is intended for another machine. Otherwise, it is processed. In broadcasting
networks it is often possible to send a packet to all machines or to a specified
subset of machines.

A different transmission technology is used in point-to-point networks. There
are many pairwise connections between individual machines. If a packet is sent
from a source machine it may have to visit one or more intermediate machines
before arriving at the destination machine. Often multiple routes, of different
lengths, exist between the source and destination machines, so routing algo-
rithms play an important role in point-to-point networks.

An alternative criterion for classifying computer networks is their scale. We
will distinguish three categories: Local Area Networks, Wide Area Networks and
Inter Networks, which are discussed in Sections 2.1.1-2.1.3.

2.1.1 Local Area Networks (LANSs)

LANs are privately-owned networks within a single building or campus of up
to a few kilometers in size. Since LANs are restricted in size, the worst-case
transmission time of a packet is known in advance. This simplifies network
management. LANs are often broadcast networks, where the computers are at-
tached to a single communication channel. There are two well-known topologies
for broadcast LANs: the bus and the ring. They are depicted in Figure 2.1.
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Figure 2.1: Two topologies for broadcast networks: (a) Bus and (b) Ring.
In a bus network the computers are connected through a linear cable. Since

it is a broadcast network only one machine is allowed to send a message at any
given time. If two machines start transmitting simultaneously, a collision occurs
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and an arbitration mechanism is needed. In the popular Ethernet LAN, which
is a broadcast bus network, this is dealt with as follows. If a machine wants to
transmit, it listens to the cable. If the cable is busy, the machine waits until
the cable is idle; otherwise it transmits immediately. If two or more machines
begin transmitting simultaneously and a collision occurs, they terminate their
transmission, wait a random time, and try again.

In a ring network the computers are situated in a circle, each connected
to two neighbors. As in the bus network an arbitration mechanism is used to
prevent collisions. A popular one is the Token Ring. In this network a special
packet, called the token, circulates around the ring whenever the communication
cable is idle. If a machine wants to transmit, it waits for the token to come,
removes it from the ring, transmits a packet and finally puts the token back on
the ring. Without the token a machine is not allowed to transmit. In this way
no collisions can occur. Besides the token ring, also token bus networks exist.

2.1.2 Wide Area Networks (WANS)

A WAN spans a large geographical area, like a country or a continent. It contains
two kinds of machines: hosts and routers. Hosts are intended for running user
programmes (i.e. applications), while routers are used as intermediate machines
for packets sent by a source host to a destination host. The routers are connected
by communication channels, which together comprise the subnet. The subnet is
usually a point-to-point network. Figure 2.2 contains an example of a WAN.

Ly T T T
Rl

I:l host O router

Figure 2.2: Hosts and routers in a WAN.

The strict separation of the communication aspects (i.e. packets traveling
between routers in the subnet) from the application aspects (i.e. the hosts)
simplifies network design. If host A sends a packet to host B, the packet is
first sent to the closest router, which stores it until the required output line is
free, and then forwards it. This principle is called store-and-forward or packet-
switching. It is possible that the packet travels via one or more intermediate
routers in the subnet. A routing algorithm is used to determine the route a
packet has to travel through the subnet.

17



2.1.3 Inter Networks

An Inter Network is a collection of interconnected networks, e.g. a number of
LANSs connected by a WAN. Often the networks to be connected are incom-
patible in terms of their hardware or software. In these cases, machines called
gateways are used to make the connection and provide the necessary translation,
both in hardware and software.

The best known example of an Inter Network is the Internet, which spans
the whole planet. The Internet is the successor of the ARPANET, which is basi-
cally the grandparent of all computer networks. The ARPANET was a research
network sponsored by the U.S. Department of Defense (DoD). It was devel-
oped in the late 1960s by network researchers hired by the Advanced Research
Projects Agency (which abbreviates as ARPA). During the Cold War the DoD
wanted to have a computer network that would still work if some hosts, routers
or communication lines would fail to function. This was one of the reasons for
designing the ARPANET. The ARPANET was a packet-switched network, con-
sisting of a subnet and host computers. It connected hundreds of universities
and government installations. In the 1980s the NSFNET, the network of the
National Science Foundation, was connected to the ARPANET. The resulting
network became known as the Internet and many existing networks were con-
nected to it. Right now the Internet literally spans the whole planet and has
several hundreds of millions of users.

Traditionally, the Internet had only four applications: e-mail (sending and
receiving electronic mail), newsgroups (users with a common interest exchanging
messages), remote login (using Telnet or Rlogin users are able to log into a
remote machine on which they have an account) and file transfer (with the FTP
program files can be copied from one machine to another through the Internet).
Up until the early 1990s, the Internet was largely used by academic, government
and industrial researchers. When the World Wide Web (WWW) was introduced
as a new application, however, also millions of non-academic users emerged on
the Internet. The WWW also attracted the attention of companies who engaged
in e-commerce.

2.2 Network software

In order to make computer networks easier to design, they are organized as a
series of layers, each one built upon the one below it. The number of layers and
the name, contents and function of each layer differ from network to network.
However, in all networks the purpose of each layer is to offer certain services to
the layer above it. In this way, the higher layers are shielded from the details of
how the offered services are actually implemented.

In a computer network, layer n on one machine carries on a conversation
with layer n on another machine. The conversation obeys the layer n protocol.
The protocol is a set of rules and conventions used between the communicating
parties. In reality, no data are directly transferred from layer n on one machine

18



to layer n on another machine. Instead, each layer passes data and control in-
formation to the layer below it, until the lowest layer in the network is reached.
Below layer 1 is the physical medium through which the data is actually trans-
ferred to another machine. Between layer n and layer n+ 1 there is an interface,
which defines the operations and services layer n offers to layer n + 1. The set
of layers and protocols is called the network architecture. As an example of a
network architecture, we will discuss the reference model in Figure 2.3. Here
virtual communication lines are dotted, while physical communication lines are
solid. Virtual communication occurs between layers on different machines, using
a protocol. Physical communication is carried out between adjacent layers on
the same machine, using the interface, and through the physical medium.

Machine 1 Machine 2
Application Protocol
5 Application | —— —— — — — — — — — — 5 Application
Interface
Transport Protocol
4 Transport | —— — — — — — — — — — 4 Transport
Interface
Network Protocol
3 Network ~ F—————— — — — — — - 3 Network
Data Link Protocol
2 Data Link  +~ —— — — — — — — — — — 2 Data Link
Physical Protocol
1 Physical @~ +~———— — — — — — — — - 1 Physical

Physical Medium

Figure 2.3: A reference model of network architecture.

Suppose a user on Machine 1 wants to send data to Machine 2. The data is
first given to the application layer. Here, some control information, contained
in the so-called application header, is put in front of the data. The application
header makes sure that the application protocol is satisfied. For example, it
specifies whether the data is an ASCII-file or a postscript-file, if some form of
data-compression is used, if the data is an e-mail or what file-naming convention
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is used.

The data and the application header are passed on to the transport layer.
Here they are split up into smaller units (if needed). Each unit is provided
with a transport header, which contains information on the size and order of
the units. The transport layer also establishes the connection between Machine
1 and Machine 2 and decides whether one or multiple network connections are
used. Finally, it is made sure that Machine 1 will not send the data faster than
Machine 2 can accept them. This mechanism is called flow control.

The data then arrive at the network layer. Here it is determined how the
packets are routed through the network from Machine 1 to Machine 2. Re-
member that in a WAN or an Inter Network there are often multiple routes via
intermediate machines called routers. If too many packets are present in the
subnet at the same time, they will get in each other’s way and form bottlenecks.
Another task of the network layer is to prevent this congestion; this is called
congestion control. The routing information and the addresses of the source and
destination host (Machines 1 and 2, respectively) are added to the data in the
form of a network header.

The layers discussed so far are all concerned with end-to-end transmission,
i.e. the source and destination machines are taken into account explicitly. The
following two layers are only concerned with sending and receiving data through
the physical medium. To them the path from the source machine to the desti-
nation machine is not visible.

In the data link layer the data arriving from the network layer are broken
up into data frames of a few hundred or thousand bytes. Each data frame has
a frame header, containing information on its size and reference number. The
data frames are transmitted sequentially. Since no communication channel is
completely error-free, the data received may deviate from the data sent. There-
fore, the data link layer also has the jobs of error-detection and error-correction.
Usually, the procedure is as follows. A common method is used to compute a
so-called checksum number for each dataframe. The checksum is added to the
frame header. After transmission the checksum is again computed. If it differs
from the number in the data link header, a transmission error has occurred. In
broadcasting networks the data link layer also takes care of obtaining access to
the shared communication channel.

The data frames are passed on to the physical layer. Here they are trans-
mitted as a sequence of bits over the physical medium. The physical layer has
to take into account the properties of the physical medium, such as how many
bits can be transmitted per second (the so-called bitrate or bandwidth; for ex-
ample, a typical Ethernet LAN operates at 10 Mbps, which is 10.000.000 bits
per second), the time it takes for 1 bit to travel from Machine 1 to Machine
2 (this is called the delay of the connection) and whether data can be sent in
both directions simultaneously (a full-duplex connection) or only sequentially (a
half-duplex connection).

The bits arrive through the physical medium (usually copper wire or fiber
optics, but also wireless networks exist) at the physical layer on Machine 2.
The data link layer then recognizes the data frame boundaries in the incoming
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stream of bits and checks the data frames for transmission errors. For each
correct frame, it sends back an acknowledgment frame. If, some time after
transmitting a frame, the data link layer on Machine 1 has not received an
acknowledgment frame, it sends the frame again. If all frames have arrived on
Machine 2 without errors, the frame headers are removed, the frames are put
together into a packet and passed on to the network layer. Here the incoming
packets are put into the right order (it might happen that the packets do not
arrive in the order they were sent due to using different routes) and the network
headers are removed. The data is passed on to the transport layer, where it is
checked if the right connection is used. The transport header is removed and
the data arrive at the application layer. Here the application header is removed
and the data are put into a file of the desired format, which can then be accessed
by the user on Machine 2.

2.3 Protocols in the Internet

Here we will discuss the protocols that are used in the network and transport lay-
ers in the Internet. First we explain the difference between connection-oriented
and connectionless networks and services.

2.3.1 Connection-oriented versus connectionless

Consider a point-to-point network containing hosts and routers, the latter con-
nected by a subnet. We say that the subnet is connection-oriented if it is modeled
after the telephone system. Before data is sent, a connection, called a wirtual
circuit, is set up and the sender and receiver negotiate about the rate at which
data can be sent or the required buffer space. This process is called option
negotiation. If these parameters are set, data can be sent in both directions,
following the same route through the virtual circuit. In this way, packets arrive
in the same order as they were sent. Due to option negotiation, flow control is
provided automatically. Also, congestion control is easy, since all packets travel
the same route through the subnet.

Alternatively, a subnet can be connectionless. In this case, it resembles the
postal system. All packets, also called datagrams, contain a full source and
destination address and are routed independently through the subnet. Hence,
they may not arrive in the order they were sent. In such a subnet congestion
control is difficult, since each packet may travel a different route. However, it is
less vulnerable to router failure. The packets are simply rerouted along another
path. In a connection-oriented subnet all virtual circuits passing through a
failed router are terminated.

The distinction between connection-oriented and connectionless does not
only apply to actual networks but also to services offered by the transport layer
in a network. In this sense, the user of a connection-oriented service establishes
a connection, uses the connection and then releases the connection. The data
arrive in the same order as they were sent. It is important to notice that a
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connection-oriented service can also be provided when the physical network is
connectionless.

An important aspect of a provided service is reliability, i.e. whether data
is not lost during transmission. Usually, a reliable service is implemented by
having the receiver acknowledge (to the sender) the receipt of each message.
It depends on the application whether a reliable or unreliable, a connection-
oriented or connectionless service is used. A reliable connection-oriented service
is often used for file transfer. In this way all the bits arrive correctly and
in the same order as they were sent. However, the acknowledgment process
introduces delays. For some applications, like digitized voice or video, speed
is more important than maintaining high quality and an unreliable connection-
oriented service is more appropriate. Other applications, like e-mail, do not
require a connection and can use a connectionless service.

2.3.2 The Internet network layer

The Internet is a connectionless point-to-point Inter Network consisting of hosts
and routers. It can be viewed as a collection of so-called Autonomous Systems
(ASes), which are regional networks. The ASes are connected by a backbone of
high-bandwidth lines and fast routers. The network layer in the Internet handles
the routing of the datagrams. These datagrams are usually around 1500 bytes
and obey the Internet Protocol (IP). The network layer puts an IP header in
front of each datagram. The IP header contains the source and destination
IP addresses, a checksum, service options (reliability versus speed) and routing
options. Each host has a 32 bit IP address, specifying the network it is in and
its address within this network.

Since the Internet is connectionless, each IP datagram may follow a different
route to its destination host. There are two different routing protocols: one
for routing within an AS (the interior gateway protocol) and one for routing
between ASes (the exterior gateway protocol). We will first describe the interior
gateway protocol, which is called OSPF (Open Shortest Path First). OSPF
works by abstracting the collection of actual networks, routers and lines into a
directed graph in which each arc is assigned a cost (e.g. delay time, distance,
number of hops or delay time and queuing time together). It then computes
the shortest paths between all pairs of routers using Dijkstra’s shortest-path
algorithm (see Dijkstra [23]). If there are m nodes in the graph, it can be shown
that the computational complexity of Dijkstra’s algorithm is O(m?). These
shortest paths must be known by all routers. Upon receiving a datagram the
router checks the destination IP address, determines the shortest path from
itself to the destination host and forwards the datagram to the next router on
this path. Therefore, each router must know the network topology inside the
AS and the ‘cost’ of each line.

The algorithm used to get this information to all routers is called link state
routing. First, a router sends a special HELLO packet on each line to its neigh-
boring routers. These routers then respond by sending back a reply telling who
they are. In this way each router gets to know its neighbors. Next, the router

22



sends an ECHO packet to its neighbors, containing a timestamp. This packet is
immediately returned by the neighbors. By comparing the timestamp with the
time at which the ECHO packet returns, the round-trip time can be computed.
If the round-trip time is divided by two, the delay of the connection is known.
In this way, each router determines the ‘cost’ of the lines to its neighbors. This
information is put into a so-called link state packet. Each router then sends
copies of its link state packet to all its neighbors and forwards incoming link
state packets on every outgoing line except the one it arrived on. This method
of distributing the packets is called flooding. Since flooding generates a lot of
duplicate packets, some method must be used to damp the process. One way
is, for each router, to keep track of the link state packets it has forwarded to
avoid sending them out a second time. For other methods see Tanenbaum [96],
Section 5.2.3. The process of flooding the link state packets ensures that all
routers in the AS know the network topology and the ‘cost’ of each line. Hence,
each router can calculate the shortest path to each other router, and determine
on which line an incoming IP datagram must be forwarded by simply checking
the destination IP address. Link state routing is a dynamic routing algorithm.
Usually, the procedure of sending HELLO and ECHO packets is repeated at reg-
ular time intervals. In this way, congestion or router failure can be taken into
account when determining the shortest paths. For more details see Tanenbaum
[96], Sections 5.2.6 and 5.5.5.

Next we discuss the exterior gateway protocol, which is used for routing
IP datagrams between ASes. This protocol is called BGP (Border Gateway
Protocol). While the interior gateway protocol only has to take care of moving
packets as efficiently as possible from source to destination, BGP also has to
deal with politics. For example, a corporate AS might be unwilling to carry
packets originating in a foreign AS and ending in a different foreign AS, even if
its own AS was on the shortest path between the two foreign ASes. However,
it might be willing to carry transit traffic for ASes that paid it for this service.
In practice, each BGP router determines the shortest paths to the other BGP
routers and discards any route violating a policy constraint. BGP uses distance
vector routing as a routing algorithm. Each BGP router maintains the distance
to each destination and also keeps track of the exact path used. Periodically,
this information is transmitted to each neighboring BGP router, which uses it to
update its own paths and distances. Updates are necessary if some line or BGP
router fails, for example. As link state routing, also distance vector routing is a
dynamic routing algorithm. Details can be found in Tanenbaum [96], Sections
5.2.5 and 5.5.6.

2.3.3 The Internet transport layer

The task of the transport layer in a computer network is to provide reliable,
efficient data transport from the source machine to the destination machine,
independent of the physical network. Although the Internet itself is a connec-
tionless network, the Internet transport layer offers both (reliable) connection-
oriented and (unreliable but fast) connectionless service to the application layer.
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The protocol used for reliable connection-oriented service is called Transmission
Control Protocol (TCP). Unreliable connectionless service is offered by the User
Datagram Protocol (UDP).

Transport using TCP works as follows. First, a connection is set up between the
source and destination hosts. Then the receiver lets the sender know how much
bufferspace is available for incoming packets. The sender takes this information
into account when sending packets. In this way flow control is incorporated
in TCP. Also during the process of sending packets, bufferspace information
is still sent to the sending host (this is called dynamic buffer allocation). For
each undamaged packet the destination host receives, an acknowledgment is
sent back to the source host. When the sender has sent all packets and received
all acknowledgments, the connection is released.

The communicating parties on the sending and receiving hosts are called
TCP entities. Communication between the TCP entities is carried out by send-
ing TCP headers, possibly followed by some additional data. A TCP header
has a standard format and includes source and destination addresses, a check-
sum and some options relating to establishing and releasing connections and
acknowledgments of received messages. The procedure of establishing a connec-
tion is called the three-way handshake. First, the sender sends a CONNECTION
REQUEST. The receiver sends back a CONNECTION ACCEPT. Finally, the sender
sends an acknowledgment of having received the CONNECTION ACCEPT. All
TCP connections are full-duplex, which means that data can flow in both direc-
tions simultaneously. Each of these directions has to be released independently
of the other. When the sender has no more data to send, it sends a CONNEC-
TION CLOSE. This is acknowledged by the receiver and one direction is released.
The receiver then also sends a CONNECTION CLOSE to the sender. If this is also
acknowledged, the connection between the two hosts is released.

In the Internet, congestion control can be found in both the network layer
(if routing algorithms use delay and queuing time as a measure of ‘cost’ on a
line) and the transport layer (TCP, not UDP). TCP congestion control is closely
linked with flow control. The data stream passed on by the application layer is
broken into segments by TCP. These segments (each with a TCP header) are
handed to the network layer for transmission. The size of the segments may not
exceed the mazimum segment size associated with the connection. Congestion
control and flow control are concerned with the number of bytes sent in one
transmission by the source host (possibly consisting of several segments) and
the timing of these transmissions. The number of bytes sent is constrained by
the bufferspace of the receiver and the internal carrying capacity of the network.
During the process of data transmission the receiver keeps the sender informed
on the amount of available bufferspace. This results in an upper bound for
the number of bytes sent in one transmission. This upper bound is called the
receiver’s window. The upper bound imposed on the number of bytes sent by
network capacity is called the congestion window. The total number of bytes
in one transmission is taken as the minimum of the receiver’s window and the
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congestion window. If a segment arrives at the TCP entity on the receiving
host, an acknowledgment is sent back. If the time between sending a segment
and receiving the acknowledgments exceeds the so-called timeout interval, the
segment is retransmitted. Only when an acknowledgment is received in time,
another segment is transmitted.

40 - timeout 1

35

threshold

30

20 T et S
threshold

Congestion window in KB

10

Il
0 5 10 15 20
Transmission number

Figure 2.4: An example of the Internet congestion control algorithm.

During the process of transmission the congestion window is increased with
each received acknowledgment. This algorithm is called slow start (see Jacobson
[50]). It uses a threshold, which is initially set to 64 KB (1 KB is 1024 bytes).
Also, the maximum segment size plays a role. If the congestion window is
smaller than the threshold and all acknowledgments of the segments sent in the
same transmission are received in time, the congestion window is doubled for
the next transmission. If the congestion window is larger than the threshold,
it is increased by the maximum segment size. If a timeout occurs (i.e. an
acknowledgment takes too long to arrive or a segment is damaged or lost),
the threshold is set to half of the current congestion window. The congestion
window itself is reset to the maximum segment size.

In Figure 2.4 the congestion control algorithm is illustrated. Here the maxi-
mum segment size is 1 KB. The threshold is 64 KB, which is also the initial value
of the congestion window. We assume that the receiver’s window is large such
that the size of the segments sent is equal to the congestion window. Initially,
64 KB is transmitted (i.e. 64 segments of 1 KB in this case), but a timeout
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occurs. The threshold is set to 32 KB and the congestion window to 1 KB. As
no timeout occurs the congestion window grows exponentially until it hits the
threshold (32 KB). Then it grows linearly, increasing with 1 KB for each suc-
cessful transmission. On transmission 13 a timeout occurs. The threshold is set
to half of the current congestion window (which is now 40 KB). The congestion
window itself is reset to 1 KB. The slow start procedure is resumed with a lower
threshold value.

An implicit assumption in the Internet congestion control algorithm is that
a timeout is usually caused by congestion. However, a timeout can also have
been caused by noise on the transmission line, resulting in damaged packets.
Nowadays, usually fiber optics are used, which have few transmission errors.
The number of timeouts depends strongly on the length of the timeout interval.
Timer management is of key importance to TCP congestion control. Work on
improvements of TCP is still continuing. For example, Brakmo et al. [14] have
reported improving TCP throughput by 40 percent to 70 percent by more accu-
rate timer management and predicting congestion before timeouts occur. This
variant is called TCP Vegas.

2.4 ATM networks

Over the last few years a new wide area service, called Broadband Integrated Ser-
vices Digital Network (B-ISDN), is available to consumers and companies. It
offers video on demand, live television from many sources, Internet connections,
a phone combined with full motion video, CD-quality music, LAN intercon-
nection and high-speed data transport. In the future, B-ISDN is supposed to
replace the telephone system and combine the mentioned services in a single new
network on which every home is connected. The technology used by B-ISDN
is called Asynchronous Transfer Mode (ATM), because it is not synchronous
(tied to a master clock) like most long distance telephone lines. The basic idea
behind ATM is to transmit all information in small, fixed-size packets called
cells. Each cell is 53 bytes long and consists of a header of 5 bytes and a payload
of 48 bytes. ATM networks are connection-oriented, i.e. making a call requires
setting up a connection first. After that, all cells follow the same path from the
source to the destination. Cell delivery is not guaranteed but their order is (this
is especially important for audio and video streams). ATM networks are orga-
nized like WANs, with communication lines and switches (routers). Each line
is unidirectional. For full-duplex operation, two parallel links are needed, one
for traffic each way. Typical bitrates for ATM networks are 155 and 622 Mbps.
The technique of cell-switching in ATM networks (using fiber optics) contrasts
the old tradition of circuit-switching (using copper wire) within the telephone
system. Cell-switching was chosen since it is more flexible (both constant rate
traffic (uncompressed audio and video) and variable rate traffic (data) can be
handled easily) and faster than circuit-switching. Also, cell-switching can pro-
vide broadcasting (necessary for television distribution) and circuit-switching
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cannot.

The layers in the ATM network architecture differ from the standard refer-
ence model in Figure 2.3. In Figure 2.5 the ATM reference model is depicted.
It consists of three layers, the physical, ATM, and ATM adaption layers. On
top of the ATM adaption layer the user can put several additional layers, for
example the network and transport layers of the Internet.

Upper Layers

ATM Adaption Layer: CS+SAR f[~-=--~-----=-=-----!

ATM Layer [~~~ ~"-~-=====--1!

Physical Layer: TC+PMD = f[-------=-------!

Physical Medium

Figure 2.5: The ATM reference model.

The physical layer consists of two sublayers: the Physical Medium Dependent
(PMD) sublayer and the Transmission Convergence (TC) sublayer. The PMD
sublayer is analogous to the physical layer in the standard reference model in
Figure 2.3. The TC sublayer is comparable to the data link layer in Figure 2.3.
One of its tasks is error-detection. Of each cell the checksum of the header
is computed to reduce incorrect delivery (error-detection in the payload takes
more time and is left to higher layers). ATM is designed to be independent
of the transmission medium. If an asynchronous system is used cells can be
transmitted at any time with arbitrary idle periods. However, if the transmission
is synchronous, it expects a cell at fixed intervals. If no cell is available when one
is needed the TC sublayer has to send an idle cell. Another important task of
the TC sublayer is to match the ATM output rate to the rate of the underlying
transmission medium. For example, if frames are used to transmit data the cells
must be fitted into these frames when sent and extracted when received. This
involves recognizing cell boundaries in an incoming bitstream.

27



The ATM layer is concerned with moving cells from the source to the des-
tination host. This involves setting up a connection (a virtual circuit), with
possibly several intermediate switches. Each virtual circuit has a number which
is added to the cell header. By checking the cell header intermediate switches
know along which virtual circuit the cell is travelling and, hence, on which line
the cell needs to be forwarded. Since fiber optics (for which ATM is designed)
are reliable and delays in audio and video streams are unacceptable, no acknowl-
edgment process is used to guarantee cell delivery. It is, however, guaranteed
that cells never arrive out of order. Another task of the ATM layer is to enforce
the quality of service demanded by the user. Several parameters (e.g. minimum
and peak cell rate, cell loss ratio and cell transfer delay) may be specified by
the user. Usually, the values depend on the application (e.g. videoconferencing
or file transfer) and the service offered (e.g. constant bit rate or variable bit
rate, real time or non-real time). The required quality of service is enforced
using, for example, a leaky bucket algorithm to adjust the cell rate. Another
factor influencing the quality of service is congestion at intermediate switches.
Congestion control in ATM networks is organized by reserving the resources a
virtual circuit needs before it is set up, i.e. the emphasis is on prevention rather
than on actual control.

The ATM adaption layer (AAL) was designed to provide useful services
to application programs and to shield them from the mechanics of chopping
up data into cells before a transmission and the process of reassembling after
it. The AAL consists of two sublayers: the Convergence sublayer (CS) and
the Segmentation and Reassambly (SAR) sublayer. The CS sublayer puts a
message between a header and trailer and hands it to the SAR sublayer. There
it is segmented into cells. The AAL can provide serveral kinds of services:
real time or non-real time, constant bit rate or variable bit rate and connection-
oriented or connectionless. At its beginning, four protocols existed, each suitable
for a specific class of services. Now, the most used protocol is AAL5 which is
functionally similar to UDP in the Internet. AALS5 offers a choice between
reliable (guaranteed delivery with flow control) and unreliable service. It can
operate in two modes: stream or message. In message mode, each call from
the application to AAL5 injects one message into the network. The message is
delivered as such, i.e. message boundaries are preserved. In stream mode the
boundaries are not preserved, which is more useful for audio and video streams.
Message mode can be used for data transfer or small messages.
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Three
Mathematical Concepts

Empirical studies of traffic in computer networks suggest that three properties
are invariantly present in the data: heavy tails, long-range dependence and self-
similarity. In this chapter we introduce these mathematical notions and briefly
discuss some methods to detect them in real-life data sets. In Section 3.1 we
introduce the concept of heavy-tailed distributions, including Pareto and stable
distributions. We discuss two common methods for detecting heavy tails, the
log-log complementary distribution plot and the Hill estimator. Also, infinite
variance stable Lévy motion is introduced. In Section 3.2 we discuss long-range
dependence as a property of stationary stochastic processes, and describe four
exploratory methods to detect long-range dependence in a real-life time series.
We apply these methods to a series of workload measurements on the Ethernet
LAN at the Bellcore company in August 1989. Next, we address the issue of
non-stationarity versus long-range dependence and show that also a realization
from a non-stationary ARIMA model can exhibit features resembling those of
the long-range dependence situation. Finally, we introduce fractional Gaussian
noise, a stochastic process with long-range dependence. In Section 3.3 we give
the definition of a self-similar stochastic process. A method used to detect self-
similarity is by plotting the data on different scales. If the relative variability
remains roughly the same on the various scales it is believed that evidence has
been found of the self-similar nature of the data. We indicate the doubtfulness of
this method by showing that the same effect can be obtained with a realization
from an ARIMA model, which is not self-similar.

3.1 Heavy tails

3.1.1 Definition and examples

The tails of the distribution of a real-valued random variable contain information
about the probability of observing values far from the median. The amount of
probability mass contained in the tails determines whether the distribution is
considered ‘heavy-’ (also ‘fat-’) or ‘light-tailed’. A typical example of the light-
tailed case is the exponential distribution P(X > z) = e ** A >0,z > 0. In
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general, we consider a positive random variable X with distribution function F'
and right tail

F=1-F.
We say that X (or F') has a heavy tail if for z > 0
P(X >z)=F(z) =27 *L(z), (3.1)

where a € (0,2) and L is slowly varying (at infinity), i.e. for all ¢ > 0,

Notice that if X has a heavy tail then Var(X) = oo. Moreover, if @ < 1 then
also E(X) = oco. For a random variable on the whole real line (3.1) defines
a heavy right tail. A heavy left tail can be defined analogously. A positive,
measurable function f(z) = z~*L(z), > 0, with @ > 0 and L slowly varying
is called regularly varying (at infinity). The parameter —« is called the index
of regular variation. Hence, (3.1) states that F is regularly varying with index
—a. A slowly varying function is regularly varying with index 0.

In the literature, heavy tails are sometimes defined by the special case of
(3.1) when L(z) — ¢ as x — oo, for some positive constant ¢. The advantage is
that mathematical calculations are simplified. Examples are Pareto and stable
distributions. A possible parametrization of the Pareto distribution is given by

F(m)z( R ) , a, k>0, z>0.
K+

If @ < 2 the Pareto distribution is heavy-tailed in the sense of (3.1). Stable
distributions are characterized by four parameters: the index of stability a €
(0, 2], a scale parameter g > 0, a skewness parameter 8 € [—1,1] and a location
parameter p € R. The characteristic function E(exp{itX}) of a stable random
variable X is given by

exp {—od|t|*(1 — ifsign(t) tan(ra/2)) +iput} L a#1,
exp { —oolt|(1 + 2B~ ")sign(t) log |¢|) + iut} if a=1.

If X has a stable distribution this is denoted by X ~ S, (09,3, u). Although
any stable distribution has a density, in general an explicit expression of the
density in terms of elementary functions is unknown. Exceptions (excluding the
degenerate case) are the Lévy distribution Sy /5(00,1, ), the Cauchy distribu-
tion S1(00,0, 1) and the Gaussian distribution S»(00,0,u) = N(u,203) (3 is
irrelevant when a = 2). The parameter 3 determines the skewness of the dis-
tribution to the left (8 < 0) or to the right (8 > 0). If 8 = 0 the distribution is
symmetric about g. The mean of a stable random variable is 4 when «a € (1, 2];
for a <1, E|X| = co. For a € (0,2) the variance is infinite. Using a Tauberian
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theorem it can be shown (see e.g. Samorodnitsky and Taqqu [89], Property
1.2.15) that for a € (0,2), a stable random variable X has tails, as £ — oo,

1 1-—
—;ﬁ oy ™, and P(X < —x)~C, 125 ;o yma

where the constant C,, is given by

P(X >z)~C,

l1—«

ifa#1,
C. = r'2-a) ;0s(7ra/2) (3.2)
— ifa=1.
™

Hence, if & < 2 a stable distribution has heavy tails in the sense of (3.1).
For more properties of stable distributions and other ways to define them we
refer to Samorodnitsky and Taqqu [89], Chapter 1. Some classical references
are Gnedenko and Kolmogorov [37], Chapter 7, Feller [33], Chapter IV and
Ibragimov and Linnik [48], Chapter 2.

There also exist broader classes of heavy tailed distributions (possibly with
finite variance) encompassing the regularly varying class. One example is the
class of suberponential distributions. A distribution F' with support (0, 00) is
called subexponential if for all (some) n > 2,

lim F_n (z)

=n, (3.3)

where F™* denotes the n-fold convolution of F. Alternatively, (3.3) states that
for iid positive random variables X;, ¢ > 1, with distribution F', for all n > 2,

n
p (;Xz > :1:) ~ P <1I£iagani > :17) , T — 00. (3.4)

For regularly varying tails (3.4) can be checked by observing that the class of
distributions satisfying (3.1) is closed under convolution (see Embrechts et al.
[28], Lemma 1.3.1). Intuitively, (3.4) says that, for extremely large values in a
sample, the tail of the sum is approximately equal to the tail of the largest sum-
mand. This is in agreement with the idea of heavy tails: values extremely larger
than the median are attained with non-negligible probability. For relations be-
tween different classes of heavy-tailed distributions we refer to Embrechts et al.
[28], Section 1.4. An encyclopedic treatment of regular variation can be found
in Bingham et al. [9].

Let & be the distribution function of N(0,1) with right tail ® =1 — ®. As
T — 00,

_ 1 2
b(—z) = (x) ~ e~ /2. 3.5
(—z) = @(z) Jora (3.5)
Hence, the tails do not satisfy (3.1). Other examples of so-called light-tailed
distributions are the exponential and gamma distributions. A graphical illus-
tration can be found in Figure 3.1, where the tails of an exponential and a
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Figure 3.1: Tails of an exponential and a Pareto distribution, both with mean
1. For the Pareto distribution a = 1.2.

Pareto distribution are depicted. In the light-tailed cases mentioned above the
probability of a large sum of n iid random variables is asymptotically larger than
the probability of a large maximum, i.e. the limit in (3.3) is infinite. Intuitively,
this can be explained as follows. For 31" | X; to exceed a high threshold z all
n random variables X; need to make a contribution, since for the individual
X; probabilities of extremely large values are negligible. The probability of the
maximum being larger than z is asymptotically equivalent to n P(X; > ).
Since less probability mass is located in the right tails the probability of all X;
being large, but not as large as z, asymptotically outweighs the probability of
one of them being larger than z.

For illustration, we give the following examples. Let the X; be iid with
common distribution F. Denote the maximum and the sum of Xi,...,X, by
M, and S, respectively. Suppose F' is exponentially distributed with mean 1/
(Exp(A)), then S, has gamma distribution I'(n, A). Moreover, as  — oo,

n i—1
P(M, >z)~ne and P(S,>z)=e " z (Az) .

il
i=1 v

Next, let F' = ®. We have
P(M,, > ) ~n ®(z),

and

P(S, >z)=P(N©O,n) >z) =& (%) .

In both examples (using (3.5) in the second one) it is clear that P(M,, > z) =
o(P(Sp > x)) as x = oo.
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3.1.2 Detecting heavy tails

Here we discuss two methods to determine as to whether the distribution of
an iid sample X3, ..., X, has a heavy tail. Notice that by (3.1) a heavy tail is
an asymptotic notion: the tail behavior is described for large = only. Hence, in
determining whether a heavy tail is present only the largest values in the random
sample play a role. Since it is virtually impossible to distinguish between the
tails cz™%, ¢ > 0, and =~ *L(z) for a more general slowly varying function L,
the emphasis is on estimating the tail parameter a.

The first method uses the empirical complementary distribution function
1-— Fn, where F, is the empirical distribution function, i.e.

. 1<
Ey(z) = - Y Icwow(Xi), z€ER.
i=1

The idea is to plot 1 — E, on log-log scales; this is called the log-log comple-
mentary distribution, or LLCD, plot. If the theoretical distribution function has
a heavy right tail then, in agreement with the Glivenko-Cantelli theorem (see
e.g. Billingsley [8], Theorem 20.6), for large n and moderately large values z,
the LLCD plot should consist of points randomly scattered around a straight
line with slope —a. An estimate for a can then be obtained by least squares
regression. In Figure 3.2 LLCD plots are shown for 100.000 realizations from a
standard exponential and a Pareto distribution with @ = 1.2. In the exponen-
tial case the slope of the curve becomes more and more negative, while in the
Pareto case the slope remains roughly the same. However, the estimate for a
strongly depends on the number of points used for the least squares regression.

Log 1-F
Log 1-F

10
i
|

Logx Log x

Figure 3.2: LLCD plots of 100.000 realizations from an exponential (left) and
a Pareto (right) distribution, both with mean 1. For the Pareto distribution
a=1.2.
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The perhaps best known and most frequently used method for estimating
the tail parameter a is the Hill estimator. It has the following form:

-1

k
) 1
G = | | 2 D 108(Xjn) | —log(Xen) |
i=1

where X, , <--- < X; , are the order statistics of the sample. For estimating
a only the k largest order statistics are used. Under suitable conditions on k =
k(n) — oo asymptotic normality and strong consistency of the Hill estimator
can be shown (see Embrechts et al. [28], Theorem 6.4.6). To obtain an estimate
of a one plots &y, against k for a variety of values k& which are small compared
to n (k/n — 0 is required for consistency). This is called the Hill plot. In the
heavy-tailed case the estimator stabilizes at a value & for appropriate values of
k. This value & is taken as an estimate for the tail parameter . In Figure 3.3
Hill plots are shown for 100.000 realizations from a standard exponential and a
Pareto distribution with & = 1.2. In the exponential case the Hill plot decreases,
while in the Pareto case it stabilizes a little below the true value of 1.2. Notice
that the range of values k for which the estimator is considered plays a crucial
role. In Figure 3.3, k/n < 0.1.

Detailed information on various methods used to estimate the tail parameter
a and possible pitfalls therein can be found in Resnick [79], Drees et al. [24]
and Embrechts et al. [28], Section 6.4.
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Figure 3.3: Hill plots for 100.000 realizations from an exponential (left) and
a Pareto (right) distribution, both with mean 1. For the Pareto distribution
a=12.
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3.1.3 Stable Lévy motion

For later use, we define a stochastic process with stable marginal distributions.
We say that a process (Ay . 5(t), t > 0) is a-stable Lévy motion if

(1) Ay 05 has independent increments
2 a -3 has stationary increments
B
(3) Ao 5(t) ~ Sa(ot'/®, B,0) for some a € (0,2], 8 € [-1,1] and ¢ > 0
4) Aq,0,p has right-continuous sample paths a.s.
7ﬂ

Notice that if @ =2 and 0 = 1/ \/i, A is standard Brownian motion. In Fig-
ure 3.4 sample paths of stable Lévy motion and Brownian motion are compared.
Stable Lévy motion has discontinuous sample paths with large jumps due to the
heavy tailed marginal distributions, while Brownian motion has continuous sam-
ple paths and Gaussian marginals. For more information on stable processes
and a constructive definition we refer to Samorodnitsky and Tagqu [89], Chapter
3.
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Figure 3.4: Sample paths of stable Lévy motion with a = 1.2 (left) and Brow-
nian motion (right).

3.2 Long-range dependence

3.2.1 Definitions

For a weakly stationary, and, hence, finite-variance stochastic process (Xy, t =
0,+1,+2,...) dependence between observations at times ¢ and ¢ + % is usually
measured by the autocorrelation function (ACF) p at lag k, i.e.

(k) _ COV(AXVt7 Xt+k) _ COV(X(], Xk)
PRE) = Var(X;)  Var(Xo)

k=0,+1,42, ...
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By plotting p(k) against k (called ACF plot) one can gain an idea of the second
order dependence structure of the process. Naturally, one expects that |p(k)|
decreases as k increases. The notion of long-range dependence refers to the
relative size of p(k) at large lags k. If p is non-negligible at large lags, we have
dependence over a long range of sequential observations. Formally, we say that
a process has long-range dependence (LRD) if the sum of the absolute values of
the autocorrelations is infinite, i.e.

> lp(k)| = oo (3.6)
k=0

Alternatively, the term long memory is used for LRD. If the autocorrelations
are absolutely summable the process is said to have short-range dependence or
short memory. This is true for some important classes of Markov processes
and ARMA processes, which are frequently applied in time series analysis (see
Brockwell and Davis [15], Chapter 3). In the literature (see e.g. Beran [4]),
LRD is also defined by describing the rate at which p(k) decreases to zero as
k — oo. Following this approach, a stationary process has LRD if

p(k) ~c, k7P, kE— oo, (3.7)

where ¢, is a positive constant and g € (0,1). Clearly, (3.7) implies (3.6).
From an empirical perspective (3.7) is more suitable than (3.6) when checking
for LRD in a supposedly stationary time series. Another reason why (3.7)
is used to define LRD is that two very popular processes, fractional ARIMA
and fractional Gaussian noise, both satisfy (3.7) with positive values p(k). For
fractional ARIMA, we refer to Brockwell and Davis [15], Section 13.2. Fractional
Gaussian noise is introduced in Section 3.2.7.

An analogous way to define LRD is through the spectral density. The spectral
density of a weakly stationary process (X, t = 0,41, £2,...) with Y}~ [p(k)]*> <
oo is defined (see Brockwell and Davis [15], Section 4.3) as

2 o0
_g —ikX
N =5 D pk)e™™,  xe[-ma],
k=—o0
where 02 = Var(X;). Since the autocorrelations are not absolutely summable
under LRD, the spectral density can have a singularity at A = 0. One can show
that (3.7) is equivalent to

FO) ~cp AL, A—=0, (3.8)

where cy is a positive constant depending on 3 and ¢,. A proof will be provided
in Section 3.2.2.

A third feature of LRD processes concerns the asymptotic behavior of the
variance of the mean X,, = n='Y ;" | X;. It can be shown that if (3.7) or,
equivalently, (3.8) holds, then

Var(X,) ~ ¢, o?n?, n — 00, (3.9
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where ¢, is a positive constant depending on ¢, and 3. The proof of (3.9) is
contained in Section 3.2.2. For ARMA processes, which have short memory,
Var(X,) decreases to zero proportionally to n~!.

3.2.2 Proofs

First, we show, under some technical conditions, the equivalence of (3.7) and
(3.8). It is followed by a proof of the implication (3.7) = (3.9).

Proof of (3.7) = (3.8): Suppose (3.7) holds and write
pk) =c, |k|PLi(|k]),  k==£1,%2,..., (3.10)

where L (z) ~ 1 asx — oo. Hence, L, is slowly varying at infinity. Additionally,
we assume that for any § > 0 and z large enough the functions z°L;(z) and
x79L,(z) are, respectively, increasing and decreasing in z. Using (3.10), the
spectral density equals

e}
0.2

FN) = o= D0 p(k)cos(k)

k=—o0

= % i_o: ) cos(kA)

2
= U— ac”Zk PL1(K) cos(kN) .

An application of Zygmund [111], Chapter V.2, Theorem 2.6, yields
o c” Zk BLi(k) cos(kA) ~ e, N 1L (ATY), A L0,

where ¢; = o?n~'¢,['(1 — B)sin(n(3/2). Since the function N~'L;(A71) is
decreasing in A the spectral density has a singularity at zero. Moreover, the
behavior of f(\) as A | 0 is determined by A?~'. This completes the proof.

Proof of (3.8) = (3.7): Suppose (3.8) holds and write

F) = WL (X)), A€ [-m,a], (3.11)

where Lo(z) ~ 1 as z | 0. Hence, Lo is slowly varying at zero. Assume that
for any § > 0 and z small enough the functions x°Ly(x) and 27%Ly(x) are,
respectively, increasing and decreasing in xz. Additionally, Lo is assumed to be
of bounded variation in (e,7) for any € > 0. This last assumption rules out any
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other singularities of f(\) with A # 0. Using Herglotz’s theorem (Brockwell and
Davis [15], Section 4.3) and (3.11), the ACF equals

o) = = [ 7 ax

g

2 ™
-2 /0 FO cos(kA) dA

zi,j/o INP=1Ly(\) cos(kA) dA.

o
An application of Zygmund [111], Chapter V.2, Theorem 2.24, yields

20%’” / NP Lo(A) cos(kA) dA ~ ¢, kPLy(k™"),  k— oo,
0

where ¢, = 2072¢;T'(8) sin(n(1 — 8)/2). By the nature of the function L, the
asymptotic behavior of p(k) is given by k~%. This completes the proof. Q

Proof of (3.7) = (3.9): We write

where

Suppose (3.10) holds with the same assumptions on L; as above. Additionally,
assume that L; is locally bounded on [1,00). Write

5a(p) zc,,nf (1 - %) kPLy(k)

k=1

n—1 n—1
_ 1 _
= 2¢, [} k BLl(k)—EE k' PLy (k)
k=1 k=1

Since the functions k=% L;(k) and k'~AL; (k) are, respectively, decreasing and
increasing in k, we have the inequalities

n n—1 n—1
/ z7PLy(2) de < Z kPLi(k) <1 +/ z P Ly (2) d,
1 —1 1

and

n—1 n—1 n
1 +/ 2 PLy(x) dx < Z EPLi(k) < / 2 PLy () dx .
1

k=1 1
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Applying Karamata’s theorem (see Embrechts et al. [28], Theorem A3.6) on
both left- and right-hand sides yields, as n — oo

n—1 1 n—1 1

-8 1-4 1-8 2—48

>k Ll(k)~1_ﬂn and > k Ll(k)~2_ﬂn .

k=1 k=1
Hence, as n — o0

PR P L R——
1-8)2-75) ’
which implies that o
Var(X,) ~ ¢, 0°n=P,

with ¢, = 2¢,[(1 — 8)(2 — 8)]'. This completes the proof. Q

Remark. Slowly varying functions L with 2°L(zx) increasing and z~°L(x)
decreasing for z large enough and any § > 0 belong to the so-called Zygmund
class of slowly varying functions.

3.2.3 Detecting long-range dependence

As mentioned above, in practice one usually tries to verify (3.7) or (3.8) rather
than (3.6). There are several exploratory methods to detect the presence of
LRD in a time series and more sophisticated statistical methods to estimate the
parameter 3 in (3.7) and (3.8). A detailed description can be found in Beran [4].
See also Abry and Veitch [1], who describe a wavelet based method for detecting
LRD. For a performance analysis of various estimators we refer to Taqqu and
Teverovsky [99, 100]. Here, we describe four methods which are frequently used
as exploratory tools.

Suppose we observed a time series (X, t = 1,...,n) and we believe it is
stationary and ergodic. One way to detect LRD makes use of the sample auto-
correlations p(k). Here, p(k) = 4(k)/4(0), where

n—k
. 1 — —
k) = =D (X — Xp)(Xpgn — Xn), 0<k<n-—1,
n t=1

is the sample autocovariance function. The division by n, and not n — k, is
needed to ensure that the function p is non-negative definite (see Brockwell and
Davis [15], Section 1.5). To check whether the sample autocorrelations p(k)
satisfy (3.7) for large k, a plot of log(p(k)) against log(k), also called the log-log
correlogram, is made. If LRD in the sense of (3.7) is present, the points in
this plot should be randomly scattered around a straight line with slope —3
for appropriate values of k and large n. A disadvantage of this method is that
the estimate p(k) is unreliable for large k with respect to n (see Brockwell and
Davis [15], Section 7.2).

An alternative method to detect LRD is estimation of the spectrum of X
with the aim to verify (3.8). A natural estimator of the spectral density is the
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periodogram (see Brockwell and Davis [15], Section 10.3), which we define by

n
Z Xt e*it)\

t=1

2
_ 1
T 27n

() , A€ [-m,7]. (3.12)

It is common use to evaluate the periodogram at the Fourier frequencies \; =
2rj/n, j = —[(n —1)/2],...,[n/2]. If LRD in the sense of (3.8) is present, a
plot of log(I(A;)) against log(A;) would result in an approximately straight line
with slope 8 — 1 for small frequencies A;. By least squares regression a naive
estimator of 3 can be obtained (for a discussion see Geweke and Porter-Hudak
[35] and Robinson [87]). One has to take into account, however, that if the
autocorrelations are not summable the periodogram fluctuates much more for
frequencies tending to zero, than for short memory processes (see Beran [4],
Theorem 3.8).

The third method focuses on the variance of the sample mean X ,,. Given a
supposedly stationary time series X we can check if (3.9) holds in the following
way. The data are split into blocks of size m (with m/n small). For the jth

block we compute the mean value Yg-m), for j = 1,...,[n/m]. The sample

variance S2, of {ng), . ,YETT/)W]} is an estimator of Var(X,,). By computing
S2 for successive values of m and plotting log(S2,) against log(m) LRD in the
sense of (3.9) can be detected. This is also called a log-log variance-time plot.
The resulting points should be scattered around a straight line with slope —g.
If the process has short memory the slope should be —1.

The oldest and perhaps best known method to detect LRD is the R/S
method. It has its origins in the field of hydrology and was first used by Hurst
[47] when he discovered LRD-like features in the yearly minimal water levels
of the Nile River. For a stationary process (X, t = 1,2,...) with partial sums
Vi = YF | X, and sample variance S? = k~'3.F | X2 — k~2Y}?, the R/S
statistic, or rescaled adjusted range, is given by

sty = st sz (- 18) — i, (% =)

It can be shown that if X; is Gaussian, stationary, ergodic and (3.7) holds, then

~uR(k) 4

k (k) =€, k— o0, (3.13)
where ¢ is a non-degenerate random variable (see Mandelbrot [63], Theorems 5
and 11, combined with Taqqu [97]) and H =1 — 3/2. The parameter H is the
so-called Hurst parameter and is frequently used as a measure of the strength
of LRD in the data (H close to 1 corresponds to a strong presence of LRD).
For various short memory processes (3.13) holds with H = 1/2 (see Mandelbrot
[63] and Feller [32]). For fractional Gaussian noise and fractional ARIMA (with
Gaussian innovations), we have

E(R(k)/S(k) ~cr kT, k= o0, (3.14)

40



where ¢, is a positive constant. For an observed time series (X, t = 1,...,n) we
can try to verify (3.14) as follows. Partition the series in [n/m] blocks of size m.
Then, for each k, compute R(m;, k)/S(m;, k), starting at points m; = im + 1,
i=0,1,..., such that m; + k£ < n. For values of k smaller than m, we get [n/m)]
different estimates of R(k)/S(k). For values of k approaching n, we get fewer
values, as few as 1 when k > n — m. Next, plot log(R(m;, k)/S(m;, k)) against
log(k) and get, for each k several values on the plot. For large k, the points
should lie around a straight line with slope H.

3.2.4 Application to the Bellcore data

We apply the four methods described above to a well-known time series in the
field of teletraffic, BC-pAug, representing the number of packet arrivals per
second on the Ethernet LAN at the Bellcore company. BC-pAug has length
n = 3142, dates from August 1989 and, for now, we assume it to be stationary.
More details of BC-pAug can be found in Section 4.2.3. In Figure 3.5 the series,
its sample ACF and its log-periodogram are depicted. The slowly decaying
ACF and the peak of the periodogram at zero suggest the presence of LRD.
In Figure 3.6 the corresponding log-log correlogram, log-log periodogram, log-
log variance-time and log-log R/S plots are drawn. Least squares regression in
these plots yields naive estimates of 8 and H = 1 — $/2 (see Table 3.1). In
the variance-time and R/S plots also the lines representing the short memory
case are depicted (with slopes —1 and 1/2, respectively). The estimates of 3
and H are all in the range of LRD and do not heavily depend on the method
used to obtain them. However, it is natural that the estimates obtained using
the log-log correlogram or the log-log periodogram are rather sensitive to the
number of points included in the regression. Therefore, only the variance-time
and R/S methods will be used in the sequel. Notice that the usual procedure
to obtain confidence bands for the estimates of 8 and H cannot be used, since
all four methods violate the assumption of uncorrelated residuals.

| method | estimate | estimate H |
log-log correlogram 0.35 0.83
log-log periodogram 0.33 0.83
log-log variance-time 0.32 0.84
log-log R/S 0.24 0.88

Table 3.1: Estimates of the strength of LRD in BC-pAug using four naive
methods.

3.2.5 Long-range dependence or non-stationarity?

From the definition of LRD it is clear that making a statement concerning the
presence of LRD in a time series involves the assumption of stationarity. The
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Figure 3.5: Time series BC-pAug (top) with sample autocorrelations (bottom-
left) and smoothed log-periodogram (bottom-right).

question as to whether an observed time series can be considered as a realization
from a stationary stochastic process is more philosophical than mathematical in
nature. A stationary stochastic process is usually thought of as a process whose
underlying distributional characteristics do not change over time. This concept
has been made mathematically precise through the definitions of strict and weak
stationarity (see e.g. Brockwell and Davis [15], Section 1.3). There is, however,
no general statistical test available for the hypothesis of stationarity of a real-
life time series. In practice, the assumption of stationarity is often justified
by first fitting the data to a stationary model and then performing goodness-
of-fit tests. Also, additional information can be used to decide whether it is
reasonable to assume stationarity. However, as mentioned by Klemes§ [54], any
finite time series can be equally likely regarded as coming from a stationary
or non-stationary model. Deviations from stationarity like trends, cycles or
level shifts can be explained as ‘local non-stationarities’ in the first case or as
‘model characteristics’ in the second. An analogous reasoning applies to a time
series with no apparent non-stationarities. It can either be seen as a ‘stationary
looking’ realization from a non-stationary stochastic process or as coming from

42



- e
[ 4
R
<
Log Periodogram

log (RIS)

Figure 3.6: Exploratory plots to detect LRD in BC-pAug: log-log correlogram
(top-left), log-log periodogram (top-right), log-log variance-time (bottom-left)
and log-log R/S (bottom-right). Least squares regression yields heuristic esti-
mates of § and H (see also Table 3.1). In the variance-time and R/S plot the
lines representing the short memory case are depicted (with slopes —1 and 1/2,
respectively).

a truely stationary process. In this sense, the matter of stationarity or non-
stationarity becomes one of personal belief.

Ever since Hurst [47] discovered features resembling LRD (also called the
Hurst phenomenon) in the yearly minimal water levels of the Nile River, there
has been much dispute about the stationarity assumption. Klemes [54] shows
that a realization from a sequence of independent random variables with shifts
in the mean, can lead one to falsely conclude the presence of LRD on the basis
of an R/S plot. See also Boes and Salas [11]. Another non-stationarity that
can cause LRD-like phenomena is a slowly decaying trend, e.g. ¢t™" with ¢ > 0
and v € (0,1). This is studied in Bhattacharya et al. [6] (R/S plot), Kiinsch
[56] (periodogram) and Teverovsky and Taqqu [102] (variance-time plot).
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3.2.6 ARIMA models and long-range dependence

The class of ARMA processes is the class of models most frequently applied
to time series that exhibit no apparent deviations from stationarity and have
rapidly decreasing autocorrelations. ARMA processes are defined as follows.
For non-negative integers p and g, let the polynomials ¢ and 6 be given by

Hz)=1—r1z—---—ppz? and 6(z) =1+6b1z+---+6,2°.
Let the backward shift operator B be defined by
Bthth—j, i=0,1,2,...

The process (X¢, t = 0,£1,+£2,...) is an ARMA(p,q) process if (X;) is station-
ary and if for every ¢

Xe—01Xem1— = 0pXep=Zt + 0 Z4 1 + - + 0424, (3.15)

where (Z;, t = 0,£1,£2,...) is a sequence of white noise, i.e. uncorrelated and
identically distributed random variables with mean 0 and variance o%.

The ARMA processes are a class of parametric processes defined by the set
of linear difference equations (3.15). Equation (3.15) can be compactly written
as ¢(B)Xy = 0(B)Z;. The name ARMA is an abbreviation of autoregressive
moving average, the polynomial ¢ being the autoregressive part and € the mov-
ing average part of the process. The parameters p and g are the order of the
process. Notice that an ARMA process has mean zero. We say that (X;) is an
ARMA(p,q) process with mean p if (X; — p) satisfies (3.15). If the polynomials
¢ and 6 have no common zeros and ¢ has no zeros inside or on the unit circle in
the complex plane, the process (X;) is called causal. A causal ARMA process
can be written as an infinite moving average X; = (0(B)/¢(B))Z;, which is the
unique stationary solution to (3.15). An ARMA process has short memory in
the sense that the autocorrelation function p(k) satisfies

(k)] < bat, (3.16)

for some constants b € (0,00) and a € (0,1). Clearly, (3.16) guarantees abso-
lutely summable autocorrelations. More properties of ARMA process can be
found in Brockwell and Davis [15], Chapter 3.

The ARMA class is very suitable for modeling stationary short memory time
series. In practice, however, ‘stationarity’ of a time series is not always observed.
Often, transformations are applied to “make the series look more stationary”.
A frequently applied method is differencing, i.e. instead of the original series
(X:) one considers

(]. - B)Xt == Xt - thl .

This will remove a global linear trend. Differencing twice, i.e. (1 — B)2X, will
remove second degree polynomials. In practice the number of times differencing
required to get an apparent stationary series is often not larger than one or two.
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This is because, on a finite interval, many functions can be well approximated
by polynomials of a reasonably low degree.

A process that, after differencing finitely many times, reduces to an ARMA
process, is called an ARIMA process (autoregressive integrated moving average).
An ARIMA process that is ARMA(p,q) after d times differencing is denoted by
ARIMA (p,d,q). Here, d is a non-negative integer and is called the order of
differencing. Hence, if (X;) is ARIMA(p,d,q) then (1 — B)?X; is ARMA(p,q).
By definition, ARIMA (p,0,q) is ARMA(p,q). Notice that if d > 1 the ARIMA
process is not stationary.

It is well-known that the ACF of an ARMA process can show slow decay to
zero if the polynomial ¢ has a zero close to the unit circle (see Brockwell
and Davis [15], Section 3.3). An ARIMA(p,d,q) process has representation
¢*(B)X; = 6(B)Z;, where ¢*(B) = (1 — B)¢¢(B). Hence, the polynomial
¢*(2) has a zero of order d at z = 1. This suggests that the sample ACF of a re-
alization from an ARIMA process can show slowly decaying behavior. The next
example confirms this and also considers the periodogram, variance-time and
R/S plots. We simulated an ARIMA(1,1,1) model with ¢; = 0.4, 6 = —0.95
and 0% = 8000. The parameter values correspond to the estimated ARIMA
model for BC-pAug in Section 4.2.2. The series length is n = 3000. In Fig-
ure 3.7 the simulated ARIMA series together with its sample autocorrelations,
smoothed log-periodogram, log-log variance-time and log-log R/S plots are de-
picted. The autocorrelations show slow decay, the periodogram has a peak at
zero and the variance-time and R/S plots yield a least squares line which differs
significantly from the short memory case. The estimates of the Hurst parameter
H in the latter two plots are 0.88 and 1.01, respectively. Hence, if the simu-
lated series is interpreted as being stationary, these four exploratory methods
are likely to yield the conclusion that LRD is present in the data.

3.2.7 Fractional Brownian motion

Here we define a stochastic process exhibiting LRD in the sense of (3.7). A
process (ocoBg(t), t > 0) with o9 > 0 is called fractional Brownian motion if

(1) Bg(t) ~ N(0,0%t2H)

1
2 (s + ¢ — |t — s*) for some H € (0, 1).
(3) By has continuous sample paths a.s.

(2) Cov(Br(s), Bu(t)) =

Since fractional Brownian motion is a Gaussian process, its finite-dimensional
distributions are completely determined by (1) and (2). An application of Kol-
mogorov’s existence theorem (see e.g. Billingsley [8], Section 36) guarantees
that the process is properly defined in this way. Using (2), it can be shown that
for s <t

Var(Bu(t) — Bu(s)) = Var(Bu(t — s)) .
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Figure 3.7: Simulated ARIMA(1,1,1) series (top) with sample autocorrelations
(middle-left), smoothed log-periodogram (middle-right), log-log variance-time
(bottom-left) and log-log R/S (bottom-right) plots.
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Hence, fractional Brownian motion has stationary increments. Notice that for
H = 1/2, By is ordinary Brownian motion. In Figure 3.8 sample paths of
fractional Brownian motion are drawn for H = 0.3 and H = 0.8. Fractional
Brownian motion has continuous sample paths which become smoother as H is
increased.

Figure 3.8: Sample paths of fractional Brownian motion with H = 0.3 (left)
and H = 0.8 (right).

The increment process Y; = By (t) — Bg(t — 1), t = 1,2, ..., of fractional
Brownian motion is called fractional Gaussian noise. It is a mean-zero station-
ary Gaussian process with ACF

1
py (k) =5 (Jb + 122 = 21kP" + k- 11*2),  k=0,1,2,...

For H = 1/2, Y is a sequence of iid N(0,0%) variables. If H # 1/2, Y is
a dependent sequence. It can be shown (see Samorodnitsky and Taqqu [89],
Proposition 7.2.10) that for H # 1/2, as k — o

py (k) ~ H(2H — 1)k*H=2

Hence, for H € (1/2,1) fractional Gaussian noise exhibits LRD in the sense
of (3.7). If H € (0,1/2) the autocorrelations py (k) are absolutely summable
and, hence, the process has short memory. More details of fractional Brownian
motion and fractional Gaussian noise can be found in Samorodnitsky and Taqqu
[89], Section 7.2.

3.3 Self-similarity

3.3.1 Definition

A stochastic process (X, ¢t > 0) is said to be self-similar if the finite-dimensional
distributions of (X,;) and (a* X;) are identical for any a > 0 and some H €
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(0,1), i.e. if
(Xaz, t>0) 2 (a7 Xy, t>0). (3.17)

Hence, the distribution of a self-similar process is invariant under a particular
scaling of time and space. The parameter H is called the index of self-similarity.
It can be shown that a-stable Lévy motion is self-similar with H = 1/a. Frac-
tional Brownian motion is self-similar with index H and, naturally, for Brownian
motion this is true with H = 1/2. For more self-similar processes we refer to
Samorodnitsky and Taqqu [89], Chapter 7.

A different notion of self-similarity is given by Cox [19]. He considers a

weakly stationary process (Yz, t > 0) and a new series (}Q(m), t > 0), given by
(m) _ 1
Y;g —E(Y;ﬁm—m—l—l‘*""‘i'y;fm);

where m > 1. Hence, Y(™ is formed by averaging the original series Y in
adjacent blocks of size m, replacing each block by its mean. The process Y (™)
is also weakly stationary. Cox calls the process Y ezactly second-order self-
similar if Y and Y ("™ have the same ACF for each m > 1. Tt can be shown that
fractional Gaussian noise satisfies this property. If the autocorrelation structures
of Y and Y™ coincide only when m — o0, the process Y is called asymptotically
second-order self-similar. It can be shown that this is the case when the ACF of
Y shows slow decay in the sense of (3.7). An example is fractional ARIMA. Tt
has to be noted that these notions of self-similarity refer to the behavior of the
ACF at large lags and, hence, must not be confused with (3.17), which concerns
the whole distribution of the process. Moreover, Cox [19] considers a stationary
process, while a process satisfying (3.17) is necessarily non-stationary.

3.3.2 Self-similarity ‘by picture’

It is tempting to argue that a sample path of a self-similar (with index H)
process on [0,1] will look qualitatively the same as a sample path on [0, 100],
where the realizations are divided by 100". However, self-similarity means that
the distribution of the process is invariant under the transformation and not
necessarily the sample paths. The method we just described is also used in
teletraffic research. In Leland et al. [60] and Willinger et al. [L06] a time series
of measured packet arrivals per time unit on the Ethernet LAN at Bellcore is
plotted on five different time scales, the time units ranging from 0.01 up to
100 seconds. From the plots it can be seen that the relative variability of the
arrival process remains roughly the same in four of the five plots. The authors
conclude that evidence has been found of the “self-similar characteristics” of
the measured Ethernet traffic. In the next example we demonstrate that the
same conclusion can be drawn for an appropriate time series, which is not self-
similar. We start with a realization from an ARIMA(1,1,1) model with ¢; = 0.4,
61 = —0.95 and 0% = 8000, which has length n = 10.000.000. The parameter
values correspond to the estimated ARIMA model for BC-pAug in Section
4.2.2. From this sequence, we construct four new sequences by taking sums over
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consecutive blocks of sizes 10, 100, 1000 and 10.000, respectively. In Figure 3.9
the series with block size 10.000 is shown in the top-left plot. It has length 1000.
In the top-right plot we have ‘zoomed in’ on blocks 700 up to 800 of the top-left
plot. In this new graph, the block size is 1000 and 1000 values are plotted. In
this way we keep ‘zooming in’ on the graph until we have reached a block size
of 10 in the bottom-right plot. This is about the same procedure as used by
Leland et al. [60] and Willinger et al. [106] to investigate the self-similar nature
of the packet arrivals.
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Figure 3.9: Consecutive ‘zooming in’ on a realization from an ARIMA model
reveals its self-similar nature?

As we see from Figure 3.9, the relative variability of the four plots remains
roughly the same. However, by taking this as an indication of the self-similar
nature of the process we are far from the truth, since the realization is from an
ARIMA model, which is not self-similar. As we have seen in Figure 3.7, the sam-
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ple ACF of a realization from an ARIMA model with the specified parameter
values above shows slowly decaying behavior. Since slowly decaying autocorre-
lations in the sense of (3.7) imply asymptotic second-order self-similarity in the
sense of Cox [19], this may be an explanation for the phenomenon occuring in
Figure 3.9.
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Four
Traffic Data Analysis

In this chapter we focus on the statistical analysis of real-life teletraffic data. In
Section 4.1 we give an overview of some of the most influential empirical studies
of computer network traffic. Using the statistical tools described in Chapter
3, these studies suggest the presence of LRD and self-similarity in workload
measurements and establish the existence of heavy tails in the empirical dis-
tributions of file lengths, transmission durations and idle times. In Section 4.2
we present our own analysis of some well-known measurement series available
in the Internet Traffic Archive [49]. In Section 3.2.4 we mentioned that LRD-
like phenomena can also be caused by non-stationarities. Even a realization
of a non-stationary ARIMA process can, for appropriately chosen parameter
values, induce LRD-like features in the autocorrelation function, periodogram,
variance-time and R/S plots. We show that most of the workload measure-
ments can be described by an appropriate ARIMA (p,1,q) process, with fairly
small values p and ¢. This suggests that non-stationarity rather than LRD is
present in the workload measurements. The analysis in Section 4.2 was done
in Stegeman [95]. In Section 4.3 we further investigate the hypothesis of non-
stationarity by analyzing the sequence of packet sizes in the Bellcore data. We
divide the packet sizes into five groups. Groups 1 up to 4 consist of 7 different
packet sizes and make up 81 percent of all packets sent. Group 5 consists of
all other packet sizes. It appears that the arrival processes of the packets in
each group are (more or less) mutually uncorrelated. A possible explanation
is that packets in Groups 1 up to 4 belong to four different processes running
on the Bellcore Ethernet LAN during the measurement period. In the arrival
processes of these groups clear non-stationarities are visible. Together with the
fact that a computer network is a rather complex and rapidly changing environ-
ment, this makes the assumption of stationarity of the Bellcore measurements
rather doubtful.
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4.1 Overview

The statistical properties of computer network traffic significantly differ from
those of voice traffic in the telephone system (see e.g. Fowler and Leland [34] or
Willinger and Paxson [107]). Telephone calls, within an hour say, tend to arrive
according to a homogeneous Poisson process, i.e. their inter-arrival times are
exponentially distributed. The lengths of telephone calls have an exponentially
bounded tail. Although variations from hour to hour are significant a pattern
can be discerned which tends to repeat itself. Also, there are predictable sea-
sonal variations. The amount of voice traffic grows from year to year but does so
slowly and steadily. On a sufficiently large time scale the number of call arrivals
is approximately equal to the long-term average, which is determined by the
arrival rates of the Poisson processes governing the call arrivals in different time
intervals. From an engineering perspective this is a very convenient property:
everything boils down to the knowledge of the long-term arrival rates.

However, when computers instead of humans are communicating, everything
changes. Unlike voice traffic, workload measurements in computer networks
(e.g. the number of packets or bytes arriving per time unit) show a high level of
variability on every time scale that is considered, from milliseconds to minutes.
For the measurements performed in 1989 on the Ethernet LAN at Bellcore
this conclusion is drawn by Leland and Wilson [59] and Fowler and Leland
[34]. The ‘burstiness’ across an extremely wide range of time scales resembles a
realization of a stochastic process with LRD. Indeed, periodic components with
arbitrarily long periods seem to be present in the data. Also, the connection
with the concept of second-order self-similarity of Cox [19] (see Section 3.3) has
been made. Several empirical studies conclude that LRD is present in workload
measurements on the basis of periodogram, variance-time and R/S plots. The
most influential among these studies is due to Leland et al. [60], who provide a
statistical analysis of the workload in the Ethernet LAN at Bellcore from 1989
until 1992. Variable-Bit-Rate (VBR) video traffic is analyzed by Beran et al. [5].
They conclude that LRD is present in 20 VBR video sequences, containing TV
programs as well as movie scenes and video conferencing images. The data
are obtained from Siemens, Alcatel and Bellcore. Paxson and Floyd [70] find
evidence for LRD in Wide Area traffic measurements at Bellcore (1989), Digital
Equipment Corporation (1993-1995) and Lawrence Berkeley Laboratory (1994).
Abry and Veitch [1], using their wavelet based technique for estimating the
Hurst parameter H, find that H = 0.8 for the Bellcore data, which is consistent
with the LRD hypothesis. In Leland et al. [60] and Willinger et al. [106] the
variability of the workload on the Bellcore Ethernet is shown to be roughly the
same on five different time scales. This is believed to be ‘pictorial proof’ of
self-similarity in the data (see Section 3.3.1).

Another difference between voice traffic in the telephone system and com-
puter network traffic concerns the distributions of transmission durations and
idle times. While in the telephone system these tend to be exponential, or at
least exponentially tailed, in computer networks they appear to be heavy-tailed.
This means that the Poisson process cannot be used to model arrival processes
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of computer-generated traffic, a conclusion drawn by Paxson and Floyd [70] who
analyze Telnet connections and FTP sessions on WANs. They find that Tel-
net packet inter-arrival times within a Telnet connection and FTP data burst
lengths within an FTP session are heavy-tailed. The arrival processes of Telnet
connections and FTP sessions, however, can be modeled by a Poisson process.
This is explained by the fact that a Telnet connection is set up by human action,
while the traffic generated within a Telnet connection is the result of a dialogue
between computers. Willinger et al. [106] consider the traffic between individ-
ual source-destination pairs in the Ethernet at Bellcore. They define a so-called
OFF-period as an interval of length greater than some threshold value in which
no packet is sent. The interval between two OFF-periods is called an ON-period.
For several choices of the threshold value and different source-destination pairs
it is shown that the distributions of lengths of ON- and OFF-periods are heavy-
tailed. Other influential studies are due to Crovella and Bestavros [20, 21]. They
analyze WWW file requests from a file server at Boston University in 1995 and
find that the distribution of transmission durations is heavy-tailed. Also, the
distribution of lengths of files available on several WWW file servers is found to
be heavy-tailed. The latter observation is seen by the authors as an explana-
tion of the heavy-tailed transmission durations. Finally, Crovella and Bestavros
consider the OFF-periods of individual workstations, an OFF-period being the
time between the completion of the transmission of the last file requested from
the fileserver and the arrival of the request for the next file at the fileserver.
The lengths of the OFF-periods are shown to have a heavy-tailed distribution.

The fact that the distributions of transmission durations and idle times are
heavy-tailed implies that extremely long transmission and idle periods occur
with non-negligible probability. Intuitively, this explains why the workload on
the network is dependent over a long range of time points and, hence, exhibits
LRD. This is exactly the idea captured by the ON/OFF model for LAN traffic
proposed by Willinger et al. [106]: individual sources with heavy-tailed ON-
and OFF-periods generate a workload process with LRD. The ON/OFF model
is discussed in detail in Section 5.1.1. Also, the so-called infinite source Pois-
son model for WAN traffic, with Poisson connection arrivals and heavy-tailed
connection durations, yields an LRD workload process (see Section 5.1.3).

Because of the high variability of transmission durations and idle times and
the burstiness of the workload across an extremely wide range of time scales,
computer networks are a far greater challenge to an engineer than the telephone
system. The effect on network performance of the traffic properties described
above is discussed in Section 5.3.

4.2 LRD or ARIMA?

In Section 3.2.5 we mentioned that LRD-like phenomena can also be caused
by non-stationarities, e.g. shifts in the mean or a slowly decaying trend. A
way to distinguish between non-stationarities and LRD is to estimate the Hurst
parameter H for various parts of a time series. If the changes in the estimated

53



value of H are ‘reasonably large’, it is not plausible that the series is stationary
(see e.g. Duffield et al. [25]). Notice that this procudure is not statistically
sound, since confidence bounds for the estimated value of H are not available.
As an example, we consider four 500-second parts of BC-pAug. The parts are
chosen such that they show significant differences in the qualitative behavior
of BC-pAug. In Table 4.1 we give the estimated values of H based on the
variance-time and R/S plots. It is evident that almost all estimates are sig-
nificantly smaller than the overall values of 0.84 and 0.88, respectively. The
estimates obtained from the R/S plot are very close to H = 1/2, which is the
short memory case. If the variance-time method is used the estimated values
increase as the behavior of BC-pAug becomes more wild and ‘less stationary’
(a time series plot of BC-pAug can be found in Figure 3.5). It is worthwhile
mentioning, however, that the wavelet based estimator of Abry and Veitch [1]
does find consistent values of H = 0.8 for different segments of BC-pAug. The
fact that the estimates in Table 4.1 differ from those obtained from the whole
series may, therefore, also result from a lack of robustness of the variance-time
and R/S estimation procedures. This would also explain the large differences
between the estimated values obtained by the variance-time and R/S methods.

| part | log-log variance-time | log-log R/S |

1-3142 0.84 0.88
51-550 0.64 0.49
851-1350 0.69 0.54
1601-2100 0.79 0.53
2643-3142 0.87 0.51

Table 4.1: Estimates of the Hurst parameter H for four 500-second parts of
BC-pAug.

A common method to ‘get rid of non-stationarities’ in a time series is to consider
the differenced series. We apply this approach to BC-pAug. In Figure 4.1 it
can be seen that the sample autocorrelations and the smoothed log-periodogram
of the (first order) differences of BC-pAug show no sign of LRD at all. The
peak at zero of the periodogram has disappeared and beyond lag 5 almost all
autocorrelations do not differ significantly from zero. From the shape of the
periodogram we may conclude that, in the differenced series, low frequencies do
not play a significant role while high frequencies are all almost equally impor-
tant. Since low frequencies correspond to long cycle periods this indicates their
complete absence in the differenced series. Sometimes, also the autocorrelations
of the absolute and squared values of the series are computed. This procedure
is used for the analysis of financial time series in order to detect non-linearities
in the series, see e.g. Embrechts et al. [28], Section 8.4. If they are outside
the 95 percent confidence bounds at large lags, this is seen as an indication
that LRD is present in (|X;|) or (X?) (this could, however, also be caused by
non-stationarities; see Mikosch and Starica [67]). However, from Figure 4.1 it is
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Figure 4.1: Sample autocorrelations (top-left) and smoothed log-periodogram
(top-right) of the differences of BC-pAug. Bottom-left and bottom-right are
the sample autocorrelations of the absolute and squared values of the differences,

respectively.

clear that these autocorrelations are also small. Notice that the variance-time
and R/S methods are useless to check whether H ~ 1/2, i.e. whether the dif-
ferenced sequence has short memory, since the telescopic sum property of the

T T T T T T T
0 50 100 150 200 250 300
Lag

differences results in artificially small cumulative sums.

In Section 3.2.6 we indicated that a realization of an appropriate non-stationary
ARIMA process can exhibit LRD-like features. This suggests that ARIMA(p,1,q)
may be a suitable model for BC-pAug. Before we fit BC-pAug to an ARIMA

model, however, we first discuss two goodness-of-fit tests.
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4.2.1 Two goodness-of-fit tests

Here we describe two methods for testing whether a time series is well modeled
by a specified ARMA process. We assume that the orders p and ¢ have been
selected and that 0% and the parameters of the polynomials ¢ and 6 have been
estimated by Gaussian maximum likelihood (for details, see Brockwell and Davis
[15], Chapters 8 and 9).

The first method considers the sample autocorrelations of the estimated
residuals. It can be shown (see Brockwell and Davis [15], Example 7.2.1) that the
sample autocorrelations pz(k), k > 1, of an iid sequence Zy, ..., Z, with EZ? <
oo are for large n approximately iid with distribution N(0,1/n). Assuming that
our fitted ARMA model is generated by an iid white noise sequence, the same
approximation should be valid for the sample autocorrelations of the estimated
residuals. Then the statistic n Ele p%(j) should be approximately chi-squared
with k degrees of freedom. However, since the estimated residuals are a function
of the maximum likelihood estimators of the parameters of the ARMA process,
they do not constitute an iid sequence. This results in a reduction of the degrees
of freedom by p + ¢ (see Brockwell and Davis [15], Section 9.4). Hence, a
goodness-of-fit test statistic for the estimated ARMA model is

k
Qz(k) =nY_p7 (), (4.1)
j=1
which is approximately chi-squared with & — p — g degrees of freedom. The
adequacy of the model is therefore rejected at level « if

Qz(k) > xi_a(k—p—q).
This test is known as the Portmanteau test. The number of lags k& should not
be chosen too large with respect to the length of the time series, since, for large
lags, the sample autocorrelations are unreliable estimates.

The second method compares the periodogram I(A) of the time series with
the theoretical spectral density f(\) of the estimated ARMA model. The spec-
tral density of an ARMA process is given by

02 H(e_”‘) 2
fy =z 01
27 |p(e )]
The idea, due to Bartlett [3], is to consider partial sums of the ratios I(\;)/f(};)
for the positive Fourier frequencies ). Self-normalization results in the statistics

IO F )
I IO /()
It can be shown that, for large n, the process \/n/2 (T, — h) is approximately

a standard Brownian bridge on [0,1] (see Priestley [76]). As a goodness-of-fit
statistic one can take

A€ [—m,7].

h=1/[n/2],2/[n/2),...,1.

T*= max +/n/2|Th—h|, (4.2)

1/[n/2]<h<1
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which has the same limit distribution as the Kolmogorov-Smirnov statistic. The
95 and 99 percent quantiles of T are 1.36 and 1.63, respectively (see Shorack
and Wellner [90], Table 1 on p. 143). For an overview of goodness-of-fit tests in
the spectral domain we refer to Priestley [76], Section 6.2.6.

4.2.2 Fitting BC-pAug to an ARIMA model

We show that ARIMA(3,1,1) is an appropriate model for BC-pAug. Combined
with the observation that a non-stationary ARIMA process can exhibit LRD-like
phenomena (see Section 3.2.6), this is an argument in favor of the point of view
that the LRD features of BC-pAug are actually caused by non-stationarities.

Using Gaussian maximum likelihood in the statistical package Splus, we
fitted the differences of BC-pAug to an ARMA(3,1) model. The orders p = 3
and ¢ = 1 are chosen using the Akaike Information Criterion (see Brockwell
and Davis [15], Section 9.2). However, orders (p,q) = (1,1) until (5,1) all
result in reasonably good fits. The estimated values of the parameters are
¢1 = 0.42, ¢ = 0.05, ¢35 = 0.01, §; = —0.94 and 6% = 7703. In Figure 4.2 the
sample autocorrelations of the residuals and a qqg-plot comparing the quantiles
of the residuals with those from the density f(z) = (6/2) exp{—d|z|}, with § =
1/56, are shown. From these plots it is reasonable to say that the residuals are
uncorrelated and have roughly exponential tails. The value of the Portmanteau
statistic Qz(k) (see (4.1)) is smaller than the critical value x3 5(k — 4) for lags
k up to 300 (for k£ = 300 the P-value is still 0.12). The Bartlett statistic T (see
(4.2)) has value 0.53, which is much smaller than the critical value of 1.36 at
the 5 percent level. Hence, we may conclude that ARMA(3,1) is an appropriate
model for the differences of BC-pAug. This implies, of course, that BC-pAug
itself can be modeled by an ARIMA(3,1,1) process.
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Figure 4.2: Sample autocorrelations (left) and a qg-plot (right) of the residuals
from the ARIMA(3,1,1) fit to BC-pAug. In the qg-plot the quantiles of the
residuals are compared to those of the density f(z) = (6/2) exp{—4|z|}, with
5 =1/56.
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4.2.3 Analysis of other workload series

Next we consider other workload series which are studied in Leland et al. [60]
and Paxson and Floyd [70] as well as more recent traces from an ATM network
(Gogl [38]) and the famous Nile River data from Hurst [47]. Each of these
series is believed to exhibit LRD. Below, we investigate as to whether evidence
for the alternative hypothesis of non-stationarities can be found. As above,
our strategy will be to show that the data can be modeled by an appropriate
ARIMA process. For all series the sample autocorrelations of the (first order)
differences and its absolute and squared values are small at large lags.

Bellcore data

The Bellcore data included in the Internet Traffic Archive [49] consists of four
traces: BC-pAug and BC-pOct contain internal Bellcore traffic and BC-
OctExt and BC-OctExt4 contain external traffic, i.e. packet streams between
Bellcore and the rest of the world. Each trace consists of timestamps and packet
sizes of the first 1 million packet arrivals of a longer trace started in either August
or October 1989. Packet sizes are between 64 and 1518 bytes, as imposed by the
Ethernet protocol. For a detailed description of the traces we refer to Leland
and Wilson [59], Fowler and Leland [34] and Leland et al. [60]. We created
a workload series by computing either the number packets or the number of
bytes that arrive per time unit, e.g. seconds. The traces of external traffic BC-
OctExt and BC-OctExt4 last for about 34 and 21 hours, respectively. They
exhibit large peaks and BC-OctExt contains a clear diurnal cycle. Therefore,
we do not regard these traces stationary (or ARIMA) and will not perform a
detailed analysis.

Of the traces BC-pAug and BC-pOct we consider the packet and byte
arrivals per second. The trace BC-pOct lasts for 1759 seconds. In Figure 4.3
BC-pOct is plotted (packets per second). There has been some dispute about
the level shift that occurs between 1000 and 1200 seconds in the trace. Accord-
ing to Duffield et al. [25] this is a clear indication of non-stationarity. Their
conclusion is based upon a comparison of the variance-time plots of the whole
series and the segments 200-1000 and 1200-1759. In Table 4.2 the corresponding
estimates of H can be found. As in the case of BC-pAug (see Table 4.1) the es-
timated values are smaller for the separate segments. However, Abry and Veitch
[1], using their wavelet based estimator, find a consistent value of H =~ 0.8.

| part | log-log variance-time | log-log R/S |

1-1759 0.96 0.83
200-1000 0.80 0.62
1200-1759 0.64 0.52

Table 4.2: Estimates of the Hurst parameter H for two segments of BC-pOct.
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Figure 4.3: Packet arrivals per second in BC-pOct.

In Table 4.3 the estimated ARIMA models for the series BC-pAug and BC-
pOct can be found. Since the estimated values of the parameters ¢;, j > 2,
were smaller than 0.1 in absolute value, we have only included ¢A51. Notice that
the values of g231 and él are very similar for the four workload series. The fit is
evaluated by the Portmanteau and Bartlett goodness-of-fit tests. The number
of lags k included in the Portmanteau statistic (k) is chosen such that for
larger lags the test fails at the 5 percent level (or k has reached n/10, beyond
which the sample autocorrelations are less reliable). As we see, for both packets
and bytes per second an appropriate ARIMA model can be found.

Wide Area traffic

In their study of WAN traffic Paxson and Floyd [70] use traces from the Digital
Equipment Corporation (DEC-PKT) and the Lawrence Berkeley Laboratory
(LBL-PKT), obtained in March 1995 and January 1994, respectively. Each of
these traces consists of all wide area packets during one hour. Here, we consider
the number of packet arrivals per second in DEC-PKT-1 through DEC-PKT-
4 and LBL-PKT-4 and LBL-PKT-5. Also, two hours’ worth of TCP traffic
between the Lawrence Berkeley Laboratory and the rest of the world, LBL-
TCP-3, is included. The data can be obtained through the Internet Traffic
Archive [49]. We will refer to DEC-PKT, LBL-PKT and LBL-TCP-3 as
DEC, LBL and LBL-3, respectively. Paxson and Floyd [70] find evidence for
LRD in these series using a variance-time plot.

In Figure 4.4 the sample autocorrelations and periodogram of DEC-1 are
shown. From the two peaks in the periodogram (approximately at frequencies
0.2 and 0.4) and the periodic behavior of the autocorrelations we may conclude
that periodicities are present in DEC-1. Hence, the assumption of stationarity
becomes rather doubtful. The same holds for DEC-j, j = 2,3,4. From Table 4.3
we can conclude that the fit of an estimated ARIMA model and these series is
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Figure 4.4: Sample autocorrelations and smoothed log-periodogram of DEC-1.

not very good. Especially the Portmanteau test gives poor results. In our
opinion, however, Figure 4.4 shows that non-stationarity rather than LRD is
present in DEC.

For LBL-4 and LBL-5 an appropriate ARIMA model can be found, al-
though the order is higher than for the series analyzed so far. The fit of the
estimated ARIMA model and LBL-3 is less good. For £ < 200 the Portmanteau
test fails, but for k € [201,402] the P-value is larger than 0.05. The Bartlett
statistic is close to the critical value of 1.36. Considerably better results are
obtained if only half of LBL-3 is considered (which is still 3600 seconds long).
In Table 4.3 the first and second half of LBL-3 are denoted by LBL-3(1) and
LBL-3(2), respectively.

Munich University ATM data

Gogl [38] considers the traffic through an ATM link connecting the Technical
University of Munich to the German Broadband Research Network. In both
directions, called RX and TX, the number of passing ATM cells is measured in
time units of 2 seconds. Here we consider two series of such measurements which
were kindly supplied by Helmut Gogl. The series, called ATM-RX and ATM-
TX, have length 43200 (corresponding to 24 hours) and contain measurements
performed in March 1998. Since a clear diurnal cycle is present we restricted the
analysis to the busy hours: 17:00 until 18:00 for ATM-RX and 12:30 until 13:30
for ATM-TX. From Table 4.3 we see that both series (also called ATM-RX
and ATM-TX) can be modeled by an ARIMA process.

Nile River data

The last time series we consider is also the most famous one: the yearly mini-
mal water levels of the Nile River at the Roda Gauge near Cairo for the years
622 — 1281. In 1951 Hurst [47] was the first to observe the LRD-like effect in
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an R/S plot of this series. We obtained the data from Beran [4], Section 12.2.
Again, Table 4.3 shows a nice fit with the estimated ARIMA model.

Most of the workload series we considered can be modeled by a non-stationary
ARIMA(p,1,q) process. This raises the question as to whether it is reasonable
to assume that there is LRD in the workload measurements. A computer net-
work is a rather complicated environment in which sending hosts compete for
bandwidth (i.e. they are not independent), congestion control algorithms adapt
sending rates to measured queue lengths and delays and routers try to find the
fastest route for packets to travel. Also, workload characteristics may change
when a new connection is set up or an active one is terminated. (See e.g. Cao
et al. [16, 17] who study the influence of the number of active connections on
traffic characteristics. See also Grasse et al. [39] who doubt the stationarity of
VBR video traffic.) These observations support the opinion that stationarity
of the workload in a computer network, even for short time periods, is rather
unlikely.

trace (p,q) b1 b2 61 6o 5% Portmanteau | Bartlett
BC-pAug (pa) | (3,1) | 0.42 * | —0.94 - [ 7.7-10% ] 0.12 (k = 300) 0.53
BC-pAug (by) | (2,1) | 0.38 * | —0.94 .| 4.6-10° | 0.15 (k = 75) 0.52
BC-pOct (pa) | (4,1) | 0.41 x| —0.95 - | 12.8-10 | 0.08 (k = 55) 0.54
BC-pOct (by) | (4,1) | 0.35 * | —0.95 -| 8.3-10° | 0.19 (k = 50) 0.56
DEC-1 (pa) (3,1) | 0.49 x| —0.93 - | 18.2-10% | 0.06 (k =12) 0.66
DEC-2 (pa) (3,1) | 0.46 * | —0.96 -] 21.8-10% | 0.11 (k = 8) 0.71
DEC-3 (pa) (4,1) | o047 x| —0.96 - 22.:5-10% | 0.14 (k = 23) 0.48
DEC-4 (pa) (3,1) | 0.38 x| —0.93 - 25.7-10% | 0.11 (k = 15) 1.15
LBL-3 (pa) (4,1) | 047 x| —0.94 - | 4.2.10% | 0.06 (k = 402) 1.24
LBL-3(1) (pa) | (3,1) | 0.43 x| —0.93 .| 4.3-10% | 0.15 (k = 359) 0.75
LBL-3(2) (pa) | (4,1) | 0.43 * | —0.91 -| 4.0.10° | 0.88 (k = 359) 0.73
LBL-4 (pa) (5,2) | —=0.28 | 0.30 | 0.29 | 0.62 | 5.0-10% | 0.28 (k = 359) 0.59
LBL-5 (pa) (7,2) | —0.26 | 0.45 | 0.22 | 0.72 | 3.5-10° | 0.23 (k = 359) 0.51
ATM-RX (ce) | (2,1) | 0.34 x| —0.84 -| 3.8-107 | 0.55 (k= 179) 0.50
ATM-TX (ce) | (5,1) | 0.46 * | —0.92 .| 41-107 | 0.82 (k=179) 0.39
Nile (1,1) | 0.35 - | —0.91 - | 4.9.10° | 0.47 (k = 66) 0.56

Table 4.3: Parameter estimates and goodness-of-fit of estimated ARIMA(p,1,q)
models for various workload series; (pa)=packets per second, (by)=bytes per
second, (ce)=cells per 2 seconds. For ¢ = 1, the estimates q},-, j > 2, are all
smaller than 0.1 in absolute value (in this case a * represents <;A52) The value of
the Bartlett test statistic T (see (4.2)) is given, as well as the P-value of the
Portmanteau test (see (4.1)). The number of lags k included in the Portmanteau
statistic @z (k) is chosen such that for larger lags the test fails (or k£ has reached
n/10, beyond which the sample autocorrelations are less reliable). Both tests
are performed at the 5 percent level, the critical value of T* being 1.36.
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4.3 Visualizing non-stationarity

Here we provide an illustration of non-stationary behavior in a computer net-
work by means of an analysis of the sequence of packet sizes in the trace BC-
pPAug. The trace BC-pAug contains the first 1 million packet arrivals (about
3142.82 seconds) of the day-long trace started at 11:25 a.m., 29 August 1989,
at the Bellcore Morristown Research and Engineering facility. Of each packet
a timestamp and the packet size have been recorded. The data consists of only
complete packets; fragments or collisions have not been recorded. About 95 per-
cent of the packets were IP packets. The packet sizes are between 64 and 1518
bytes, as imposed by the Ethernet protocol. There are 1518 — 64 + 1 = 1455
different packet sizes possible. Of these, 589 do not occur and 776 occur no
more than 100 times. In fact, 6 packet sizes occur so often that they make up
78.4 percent of the data. This can be seen in Table 4.4 below.

| packet size | frequency |

64 105053
66 45496
162 203052
174 183907
1090 173802
1518 72676

Table 4.4: Packet sizes with the highest frequencies.

The smallest packets of 64 bytes are used by LAN stations to send information
to other LAN stations concerning their state. The packets of 66 bytes are small
TCP packets sent over the Ethernet by a TCP router, carrying information
for other TCP routers. The packet size of 1090 bytes probably occurs so often
because these packets traverse a network, other than the Ethernet, for which a
maximum segment size is 1090 bytes. The largest packets of 1518 bytes make
up files that were too long to transmit in one time. We do not know what the
packets of 162 and 174 bytes represent. In Figure 4.5 a histogram of the packet
sizes is depicted.

Next we consider the arrival processes of packets of a fixed size. We count
the number of packet arrivals in time intervals of 4 seconds. In Figure 4.6 the
number of arrivals per interval for the 6 most frequently occurring packet sizes
(and 4 others) are plotted. In the plots of 162 and 174 bytes we see that a change
occurs just before the 600th interval. For the 64 byte packets the number of
arrivals in the first 100 intervals deviates from the rest of the arrival process.
The arrivals of the 938 and 1518 bytes show a change after interval 650. Notice
that the patterns in the 4 last plots are very dissimilar. This is probably due to
the fact that these packet sizes are used by different processes running on the
Ethernet at the time of the measurements. Between intervals 480 and 630 no
packets of 1242 bytes were sent.
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Figure 4.5: Histogram of the packet sizes (left: 64-200 bytes, right: 201-1518
bytes).

In Figure 4.6 it can be seen that the patterns in the graphs for 66 and 1090

bytes are similar. This also holds for 162 and 174 bytes and 938 and 1518 bytes.
For these pairs of packet sizes scatter plots of the number of arrivals in the
4-second intervals are depicted in Figure 4.7.
Packet arrivals of 66 and 1090 bytes, 162 and 174 bytes and 938 and 1518 bytes
show a strong positive correlation. There is no positive relation between the
number of arrivals of 64 and 66 byte packets. We do, however, discern a slight
negative correlation. This is due to the fact that these packets are competing
with each other for bandwidth. Since the speed of the Ethernet LAN at Bellcore
is 10 Mbps, the trace lasts for 3142.822 seconds and 434.292.031 bytes are sent
during the measurements, the utilization of the network is

434.292.031 « 8

~ 11.06.
10.000.000 * 3142.822 06

The relatively low utilization of 11 percent explains that there is no strong
negative relation between packet arrivals of 64 and 66 bytes. There is enough
bandwidth available.

In Table 4.5 the correlation coefficients of the number arrivals of pairs of

the 7 packet sizes in Figure 4.7 are computed. We made scatter plots and
computed correlation coefficients of other pairs of packet sizes and discovered
that the packet sizes can be divided in 5 (more or less) mutually uncorrelated
groups: {64}, {66,1090}, {162,174}, {938,1518} and a group consisting of the
other packet sizes.
The exploratory analysis above shows that the traffic captured in BC-pAug is
probably generated by a few processes which are roughly mutually uncorrelated.
Figure 4.6 indicates that the arrival processes of the packets are not consistent
with the assumption of stationarity. Therefore, stationarity of the workload
series obtained from BC-pAug is rather doubtful.
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Figure 4.6: Number of packet arrivals in 4-second intervals for the most fre-
quently occurring packet sizes.
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Table 4.5: Significant correlation coefficients for pairs of arrival processes. The
standard Pearson test was used at the 5 percent level with a two-sided alterna-

tive.
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Figure 4.7: Scatter plots of packet arrivals in 4-second intervals.

64 66 162 174 938 1090 1518

64 | 1.00 -0.21 -0.21 —-0.18 0.07 -0.21
66 1.00 0.99 0.09
162 1.00 0.94 -0.10
174 1.00 -0.10
938 1.00 0.88
1090 1.00 0.08
1518 1.00
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Fve
Modeling Computer
Network Traffic

LRD and self-similarity are observed in traffic measurements on a variety of
networks, ranging from LANs and WANs to the global Internet. Computer
networks have, over the past decade, undergone significant changes in their con-
stituent traffic flows (from FTP-dominated to HTTP-dominated traffic), type of
users (from professionals only to everybody online), transmission technologies
(the invention of ATM technology) and scale (the Internet grows exponentially
fast). Since the presence of LRD and self-similarity seems insensitive to chang-
ing network conditions, these phenomena are seen as traffic invariants. In this
chapter we focus on underlying physical explanations for LRD- and self-similar
features in workload measurements, making use of a mathematical modeling
approach.

In Section 5.1 we discuss two popular models which link heavy-tailed trans-
mission durations (and idle times) to LRD in the workload of the network. The
first model, the so-called ON/OFF model, was introduced by Tagqu and Levy
[98] and considered for modeling network traffic by Willinger et al. [106]. The
ON/OFF model evaluates the workload generated by a finite number of inde-
pendent ON/OFF sources. An individual ON/OFF source can be either ON or
OFF, sending data at a constant rate when it is ON and remaining silent in the
OFF state. The lengths of the periods that a source is ON are assumed to be
realizations from a heavy-tailed distribution. Heath et al. [45] show that this
yields an aggregated workload process exhibiting LRD. In the second model,
network traffic consists of independent sessions whose arrivals are governed by
a Poisson process. Within each session traffic is generated at unit rate. Ses-
sion lengths have a heavy-tailed distribution and are independent of the arrival
process. This model, introduced by Cox [19] as the immigration-death process,
is a special case of the M /G /oo queuing model. In networking literature, it is
known as the infinite source Poisson model (see e.g. Guerin et al. [41]). Cox [19]
shows that the workload process generated by this model exhibits LRD. Since
in the infinite source Poisson model sessions are the building blocks of network
traffic it is appropriate for modeling WAN traffic. The ON/OFF model, with
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its construction of explicit sources, is suitable to model traffic generation in a
LAN.

In Section 5.2 we consider the cumulative workload process, both in the in-
finite source Poisson- and the ON/OFF model. In case of the ON/OFF model,
it is shown in Willinger et al. [106] that if first the number of sources converges
to infinity, followed by the time window, the properly centered and normalized
cumulative workload process converges weakly to fractional Brownian motion.
Hence, the cumulative workload process can be approximated by a self-similar
process. Moreover, the LRD in the workload process is preserved in the incre-
ment process fractional Gaussian noise. Taqqu et al. [101] show that if the two
limits of the number of sources and the time window are reversed (and a differ-
ent normalization is used) stable Lévy motion is obtained as limiting process. In
this case, the limit is still self-similar but has independent increments. Instead
of these sequential limit regimes we also consider the case when the number of
sources and the time window go to infinity simultaneously. If the number of
sources grows ‘fast’ with respect to the time window, convergence of the cumu-
lative workload to fractional Brownian motion can be shown. Alternatively, in
the ‘slow’ growth regime stable Lévy motion appears as limit. Such simultane-
ous limit results were considered in Stegeman [93], Mikosch and Stegeman [65]
and Mikosch et al. [66].

For the cumulative workload process in the infinite source Poisson model the
same limit processes can be obtained. In this case, the parameters converging
to infinity are the rate of the Poisson process and the time window. Taking only
the latter limit, Resnick and van den Berg [80] show convergence to stable Lévy
motion. Simultaneous limit regimes, yielding both fractional Brownian motion
and stable Lévy motion as possible limit processes, were considered by Resnick
and Rootzén and incorporated in Mikosch et al. [66].

In Section 5.3 we consider the effect on network performance of the heavy-
tailed transmission durations incorporated in the ON/OFF- and infinite source
Poisson models. Both theoretical queuing results as well as simulation studies
are discussed.

5.1 Heavy tails as the cause of LRD

Here we define the ON/OFF model and the infinite source Poisson model in
detail and discuss the physical explanation, in the form of heavy-tailed trans-
mission (or session-) durations, they offer for the presence of LRD in workload
measurements. Also, we address the question whether these rather simplistic
models adequately describe real-life computer network traffic.

5.1.1 LAN traffic: the ON/OFF model

First, we consider a single ON/OFF source such as a workstation as described
in Heath et al. [45]. During an ON-period, the source generates traffic at a
constant rate 1, e.g. 1 byte per time unit. During an OFF-period, the source
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remains silent and the input rate is 0. Let Xo,, X1, X2, ... be iid non-negative
random variables representing the lengths of ON-periods and Yog, Y7, Y2,... be
iid non-negative random variables representing the lengths of OFF-periods. We
also write

Z;i=X;+Y;, 1>0.

The X- and Y-sequences are assumed independent. For any distribution func-
tion F we write F' = 1—F for the right tail. By Fy,(Fog) we denote the common
distribution of ON(OFF)-periods.

We assume that the distributions Fy;, and Fog are heavy-tailed, i.e.

Fon(z) =27 % Lon(z) and Fog(z) = 27 %% Log(x), x>0, (5.1)

where qon, aor € (1,2) and Loy, Lo are slowly varying at infinity. Hence, both
distributions Fy, and Fog have finite means po, and pog but their variances are
infinite. Notice that the tail parameters a,, and a,g may be different, hence
the extremes of the ON- and OFF-periods can differ significantly. If aon = o,
we assume that the tails F,, and Fog are balanced in the sense that

Fon(z)

= lim =
T—00 Foﬁ'(w)

€ (0,00),

ie. Lop(z) ~ £ Logr () as © — oc.

Consider the renewal sequence generated by the alternating ON- and OFF-
periods. Renewals happen at the beginnings of the ON-periods, the inter-arrival
distribution is F,, * Fyg and the mean inter-arrival time

p=EZ1 = pon + poff -

In order to make the renewal sequence stationary (see Resnick [78], p. 224, for
a definition), a delay random variable Ty is introduced which is independent of
the X;s and the Y;s. A stationary version of the renewal sequence (7)) is then
given by

n
%,n:%+2z,nzL (5.2)
i=1
One way to construct the delay variable Ty (see Heath et al. [45]) is as

follows. Let B, éﬂ) and Y;(f(;) be independent random variables, independent
of {Yorr, (X5), (Yn)}, such that B is Bernoulli with

P(B:]-):NOH/N:]-_P(B:O)a

and



Define
To=B (X + Yor) + (1 - B) Y.

on

The renewal sequence (5.2) is then stationary. Define the corresponding renewal
counting process

&= 1poy(T,) with mean py = E& =t/p. (5.3)
n=0

The ON/OFF process of one source is now defined as the indicator process

o0

W(t)=B 1[0,X§?.)) () + Z l[Tn,T,.J,-Xn.H)(t) , t>0.
n=0
The ON/OFF process W is a binary process with W (t) = 1 if ¢ is in an ON-
period and W (t) = 0 if ¢ is in an OFF-period. The stationarity of the renewal
sequence (5.2) implies strict stationarity of the process W with mean

EW(t) = POW(t) = 1) = pton/ 1.

The precise rate of decay for the autocovariance function of the stationary
process W, under the assumptions (5.1) and a,n # aof is given in Heath et al.
[45]: defining

. Loy if aon < ot
Qmin = Min(Qon, Qof) and  Lyin = _
Log if aon > Qioff

and

Hoff if aon < o,
Hmax = .
ton if cton > o,

one has as k — oo,

~ % —(amin—1) 7
Cov(W(t), W(t + k)) (o — 1) 127 k Lpin(k) . (5.4)
Since apmin € (1,2), the process W exhibits LRD in the sense that the auto-
correlations are not absolutely summable (see Section 3.2). Intuitively, this can
be explained as follows. Since the lengths of the ON- and OFF-periods follow
a heavy-tailed distribution, they can assume extremely large values with non-
negligible probability. Such an extremely large ON- or OFF-period may contain
both W (t) and W (t+ k), even if k is extremely large, yielding the non-negligible
covariance in (5.4).
So far we have considered the ON/OFF process W of a single source. Will-
inger et al. [106] consider a network of M iid sources. Each source generates an
ON/OFF process W (™), The total traffic in the network at time ¢ is defined by

M
Wu(t)=> W), t>0.
m=1
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We call Wy the workload process. Since the sources are iid, (5.4) yields that
the workload process also exhibits LRD. Indeed, the stationary version of Wy,
satisfies

Cov(War(t), War(t + k) = M Cov(WD (&), W (¢ + k)) .

The total traffic in the interval [0, ] is then given by

t M
CWM(t):/ (Z W<m>(u)> du, t>0. (5.5)
0 m=1

We call CWy, the cumulative workload process.

5.1.2 The ON/OFF model and reality

The introduction of the ON/OFF model into the networking community by
Willinger et al. [106] is accompanied by a detailed statistical analysis at the
source level of traffic generated in the Ethernet LAN at Bellcore. As we de-
scribed in Section 4.1, ON- and OFF-periods are defined for the traffic between
individual source-destination pairs. It is found, using the LLCD plot and the
Hill plot (see Section 3.1.2 for definitions), that the distributions of the lengths
of ON- and OFF-periods are heavy-tailed with tail parameter between 1 and 2.
Also, it is mentioned that no evidence is found for dependence in (or between)
the sequences of ON- and OFF-periods. The other independence assumption,
namely that of the M sources in the model, however, is less likely to hold in a
real-life network. Indeed, sources, when simultaneously in the ON state, are usu-
ally competing for bandwidth and buffer-space if the utilization of the network
is not extremely low. This was also illustrated in Section 4.3 (see Figure 4.7)
where we analyzed Ethernet packet arrivals at Bellcore.

The ON/OFF model does not involve queuing or congestion control, which
make it seem rather simplistic. Still, it is successful in capturing some charac-
teristics of real-life LAN traffic. An explanation is offered by Park et al. [68]. In
their simulation study, they consider a network consisting of 32 clients and 2 file
servers. The clients request files from the servers. The file lengths of the files
on the servers are taken from a heavy-tailed distribution. After the last byte of
the requested file is received by the client, the time of the next request is taken
from an exponential distribution. The simulated network also features queu-
ing and congestion control, the latter being either TCP or UDP (see Section
2.3.3). Hence, the clients are not independent as the sources in the ON/OFF
model. The workload in the network is measured at a bottleneck link between
the clients and the two servers. It is found that LRD is present in the traffic
measurements. Moreover, the intensity of LRD increases as the tail parameter
of the heavy-tailed file size distribution is taken closer to 1, which is consistent
with (5.4). Park et al. [68] focus on the influence of TCP and UDP on the
observed LRD in the workload. In the UDP case there is little LRD, while TCP
maintains the LRD induced by the heavy-tailed file lengths. This is explained
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in [68] as follows. The reliable transmission and flow control mechanisms of
TCP tend to “stretch a file in time”, i.e. it takes longer for the transmission to
be completed, while greedy unreliable UDP-based communication encourages
traffic to be maximally “stretched out in space” by using a large portion of the
available bandwidth (remember that UDP is used for applications for which
speed is more important than reliability, e.g. video conferencing). Hence, the
transmission of a file using TCP results in a longer ON-period than when UDP
is used. In this way, TCP stretches the already heavy-tailed ON-periods and,
hence, amplifies the LRD in the measured workload. Since TCP is the most
frequently used transport protocol today, this explains the success of the simple
ON/OFF model in describing network traffic.

The assumption that the ON/OFF sources are identical can be relaxed.
Willinger et al. [106] also consider heterogeneous sources with different tail
parameters of Fy, and Fog. Also, a combination of sources with exponential ON-
and OFF-periods and ‘heavy-tailed sources’ is possible, as well as sources with
different sending rates. The assumption that the rate at which the ON/OFF
source transmits data is constant is not very restrictive in the LAN context. This
is confirmed by the so-called textured plots that are used to visualize the ON-
and OFF-periods in the traffic between a source-destination pair (see Figure 2
in [106]).

5.1.3 WAN traffic: the infinite source Poisson model

First, we define the Poisson process governing the arrivals of the connections
from individual sources in the network to a server. Let (I'y,—0c0 < k < 00)
be the points of a rate A homogeneous Poisson process on R, labeled so that
I'p < 0 < I'y. Hence, {-To,I'1,(Ty1 — T,k # 0)} are iid exponentially
distributed random variables with parameter A. We imagine that the network
has an infinite number of sources, and at time 'y, a connection is made and some
source begins a transmission at constant rate to the server. As a normalization,
this constant rate is taken to be 1. The lengths of connections are random
variables X ,gcon). We assume X X[ x{®™  areiid and independent
of (T'y) and

P(X(gﬁon) > ,Z') = Fcon(x) = m_aconLcon(.’L') s xr > 07 (56)

where acon € (1,2) and Lo, is a function slowly varying at infinity. Hence, the
variance of X5 is infinite and its mean lcon is finite. Notice that

o0
Vv = € con
Z (Th, X)) 7

k=—00
the counting function on R x [0, 0o] corresponding to the points {(I'y, X ,EC"“))},

is a two dimensional Poisson process on Rx [0, oo] with mean measure AL X Fon
(see Resnick [77], Proposition 3.8), where L denotes Lebesgue measure.
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Since the sources transmit at unit rate, the workload W (P! (¢) in the network
equals the number of active sources at time ¢. The workload has representation

oo

WED () = 3" Upecrer,x = v({(s,9) € R x (0,00] 1 s <t < s +y}).
k=—o0
(7
The second expression in (5.7) makes it clear that for each ¢, W®)(¢) is a
Poisson random variable with parameter

AL X Feon({(s,y) € R x (0,00] : s <t < s+y})

t o] t
= / / AL(ds) x Fron(dy) = A / Foon(t — ) ds = X freon -
s=—o0 Jy=t—s — 00

Notice that due to the memoryless property of the exponential distribution and
independence of the Poisson process and the connection lengths, the process
W(Pe) ig stationary. The cumulative workload in [0,#] is given by

t
CwW P (¢) = / WP (s ds. (5.8)
0

Analogous to (5.4), we find that heavy-tailed connection lengths X ,ECO") induce
LRD in W®°), By means of a point process argument dating to Cox [19] one
can show that as k — oo

Cov(W®D (1), WPV (¢t 4 k) = A / Feon(v) dv ~ (const) k Feon(k)
k

= (const) k~(@een=) L (k),

where ~ follows from Karamata’s theorem (see e.g. Embrechts et al. [28],
Theorem A3.6).

5.1.4 The infinite source Poisson model and reality

The construction of superimposed connections resembles traffic generation in a
WAN: first a connection is set up after which data is transmitted. The assump-
tions of Poisson connection arrivals and heavy-tailed connection lengths are
consistent with the findings of Paxson and Floyd [70], whose analysis of WAN
traffic is described in Section 4.1. A more recent empirical study of WAN traffic
is due to Guerin et al. [41]. They consider HTTP sessions at Boston University
(1994-1995) and Berkeley (1996), traffic passing an ATM link at the Technical
University of Munich (1997) and file transfers to and from a corporate WWW
Ericsson server (1998). Although [41] find evidence for heavy-tailed connection
lengths with tail parameter between 1 and 2, the data are inconclusive regarding
the assumption of exponential inter-arrival times. As possible explanations [41]
mention the difficulty of identifying Poisson time points in the data and the fact
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that a Poisson process model is only expected to be a good approximation when
activities by many humans are aggregated. Guerin et al. [41] do find the data
consistent with the independence of the connection lengths.

In general, [41] state that the infinite source Poisson model does not ade-
quately describe the datasets considered. They refer to the assumption of a
constant transfer rate as the center of the problem. Indeed, the WAN traffic
measurements analyzed by [41] show widely varying transfer rates. Moreover, it
is known that two applications that contribute major portions to WAN traffic,
namely FTP and HTTP, do not transmit their packets at a constant rate but in
a highly bursty manner. This is mainly caused by congestion in the network and
the TCP algorithm (see Section 2.3.3 for a detailed description). The assump-
tion of a constant transfer rate is relaxed in Kurtz [57] and Konstantopoulos and
Lin [55], where the cumulative workload generated by an individual connection
is described by a general non-decreasing function. In this way, TCP dynamics
can be taken into account by choosing a piecewise linear function, since TCP
periodically adapts the transfer rate to network conditions. See also Resnick
and van den Berg [80].

Finally, Resnick and Rootzén [82] consider the infinite source Poisson model
in the case when the connection length X{°™ has a heavy-tailed distribution
with tail parameter between 0 and 1.

5.2 Self-similar limits

In probability theory a self-similar process can be decribed as the limit (in
the sense of the finite-dimensional distributions) of a sequence of stochastic
processes (see Lamperti [58]). The role of self-similar processes is comparable to
that of the Gaussian distribution in the Central Limit Theorem. In this section
we show that the centered and properly normalized cumulative workload in
both the ON/OFF- and infinite source Poisson model converges to a self-similar
limiting process, the latter being either fractional Brownian motion or stable
Lévy motion.

5.2.1 Convergence to fractional Brownian motion

Consider the cumulative workload in the ON/OFF model as defined in (5.5).
We focus on the weak limit behavior of the sequence of processes (CWs (T't))¢>0
as both the number of sources M and the time window 7" go to infinity. Here,
we treat the case when first M — oo and then T — oo.

Exploiting the notation introduced in Section 5.1.1, we write

F(2 — Clon) F(Q — aoﬁ‘)

don = )
(aon — 1) (cor — 1)

and doﬁ‘ =

and )
don if Qon < Qoff )
dmin =

dog  if aor < Qon -
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Moreover, set

2 /112 a dmin
___I"max "7 if n ,
o2 = :u3 F(4 - amin) o # Goff
0=
2 (i don £+ o) o
w3 T(4 — amin) on o

Willinger et al. [106] show that if T — oo
Var(CWy(T)) ~ o T3 % Lonin(T) . (5.9)

The main result of [106], formally stated below, is that, if first M — oo and
then T" — oo, the finite-dimensional distributions of the centered and normalized

process

Vi (t) = C(VE;(?,T_ tzm_fii?;‘;)(ﬂ ) (5.10)

converge to those of fractional Brownian motion. Notice that E[CWa(T't)] =
(Hon/p)MTt.

Theorem 5.1 Let F,, and Fog satisfy (5.1), H = (3 — amin)/2 and oo be as
above. Then for any z1,...,2, €ER, t1,...,t, >0 andn > 1

lim lim P(Viary(t) < 21, Vi) (tn) < @)

T—o00 M—0

= P(O‘()BH(tl) S L1y - .,UoBH(tn) S .CL'"),

where By is fractional Brownian motion as defined in Section 3.2.7. Q

Usually, convergence in the sense of the finite-dimensional distributions involves
only one limit. In this case, however, the process V(;; 1) depends on two pa-
rameters, which both go to infinity.

Fractional Brownian motion is self-similar with parameter H. Under the
conditions of the theorem, H € (1/2,1) and so the corresponding fractional
Gaussian noise sequence exhibits LRD (see Section 3.2.7). Hence, the LRD in
the pre-limit workload process (see (5.4)) is preserved in the limit. Theorem 5.1
gives a probabilistic explanation of the observed self-similarity and LRD in
computer network traffic provided one accepts that the limits of M and T are
taken in the proposed order.

Brief sketch of the proof

The proof of Theorem 5.1 is as follows. Due to the Multivariate Central Limit
Theorem and the factor M'/? in the normalization of (5.10) the first limit
M — oo guarantees a mean-zero Gaussian limiting process with stationary
increments. Afterwards, as T — oo, the variance of the limit is stabilized by
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choosing the normalization equal to the square root of the right-hand side of
(5.9). Notice that (5.9) follows from

Var(CW1(T)) = 2/0T /Os Cov(W(0), W (u)) du ds,

combined with (5.4) and Karamata’s theorem.

Since two sequential limits are taken it is not clear whether an extension of
the result to weak convergence in the space of continuous functions C[0, 0o) (see
e.g. Whitt [108]) is possible.

5.2.2 Convergence to stable Lévy motion

Here we see what happens when the limits in Theorem 5.1 are reversed, i.e. we
consider the convergence of the finite-dimensional distributions of the cumula-
tive workload process (CWar(T't))¢>0, if first T — oo and then M — co. In this
case, stable Lévy motion appears as limiting process.

Again exploiting the notation introduced in Section 5.1.1, we write

—1/amin
C 1/ min,

Omin = Qmin

where C, is given by (3.2). If ao, # o, set

1 ifan<aﬁa
c=—m and §= D
M+ Qmin —1 if aeg < aon -

If aon = aor = @, set

o g a \1/a o g 0
(/‘Loﬁ' ;f‘/on) and ﬂ — /‘L(;ﬁ‘ Hon .
14 @ luoﬁ'e-*_ Hgn

Let Fmin(x) =1- x_amianin(x)a ie.

Fon  if aon < aofr,
Foin = .
Fog  if oo < 0ton s

and define its quantile function
b(@) = (1/Fmin(z)) ", >0. (5.11)

For a given non-decreasing function g we define the left-continuous generalized
inverse of g as

9" (y) =inf{z : g(z) > y} .
Notice that b(z) = zt/ “m‘“Zmin(x), where Emin is a slowly varying function
satisfying
. 1/0min T, .
lim Lin(z Lin(z))

e Lo ()

=1

7
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(see Ibragimov and Linnik [48], relation (2.6.4)).
The following theorem, due to Taqqu et al. [101], states that if first T — oo,
the finite-dimensional distributions of the process

Facrnlt) = CWM%)/;?%M (T1)]

converge to those of stable Lévy motion.

Theorem 5.2 Let Fy, and Foi satisfy (5.1) and ¢, omin and 8 be as above.
Then for any z1,...,2, €ER, t1,...,t, >0 andn >1

lim  lim P(‘N/(M,T) (t1) < z1, .. -,‘7(M,T) (tn) < zn)

M—o0 T—o0
= P(C Aaminaaminaﬁ(tl) S Tlyeeey CAaminao'minaﬁ(tn) S :I’.") ’

where A g is stable Lévy motion as defined in Section 3.1.3. Q

Q®min;0min;

Comparing this result with Theorem 5.1 one may conclude the following: if the
limits are reversed and a different normalization is used, another self-similar
process, infinite variance stable Lévy motion, appears as limit process. In con-
trast to the fractional Brownian motion of Theorem 5.1, the LRD is completely
lost: the limit process has independent increments.

A related result is obtained by Levy and Taqqu [61], who consider a renewal
reward process for which both the inter-renewal distribution and the distribution
of the rewards are heavy-tailed. Convergence of the total reward in [0,7t] to a
stable self-similar process is shown as T' — oo. See also Pipiras and Taqqu [73].

Brief sketch of the proof

The process V(1) can be decomposed into

Vo, () = [MYomnb(T)]71 5737 7™ 4 0p(1), (5.12)

where £ is the counting process defined by (5.3), Jj, is the centered contribution
of the renewal interval [T_1,T%), i-e.

Jy = X = P(W =1) Zj, = (post / ) (Xk — fon) = (ton /1) (Yi — Hoft) ,

and op(1) converges to zero in probability as T — oo. The term op(1) con-
tains the contributions of the intervals [0, Tp) and [T¢,,—1,Tt] and the difference
between the centering used in 17( wm,r) and the random sum in (5.12). An appli-
cation of Theorem V2.2 in Gut [43] yields that, for T — oo and M > 1 fixed,
the random sum in (5.12) converges weakly to the sum of M iid amin-stable
Lévy motions. The weak convergence takes place in the space D[0, 00) of cadlag
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functions, equipped with the J;-metric (see e.g. Pollard [75]). Since the sum of
M iid mean-zero a-stable random variables X’l, ey X  has the same distribu-
tion as M'/@X, for 1 < a < 2 (see Samorodnitsky and Taqqu [89], Corollary
1.2.9), the limit M — oo is trivial and Theorem 5.2 holds for any fixed M > 1.

The convergence in Theorem 5.2 cannot be extended to weak convergence
in the Ji-topology. This is proved by Konstantopoulos and Lin [55]. They
consider a sequence of random elements with continuous paths, converging in
the sense of finite-dimensional distributions, to a random element in D[0, 1]. If
the limit has discontinuous paths with positive probability, then there is no weak
convergence under the Ji-topology. Since the process V() has continuous
paths and stable Lévy motion has discontinuous paths a.s. the result of [55]
applies. An alternative proof of the impossibility of J;-convergence, using an
extreme value argument, is given in Stegeman [92]. At this moment it is not
clear whether weak convergence holds in a weaker topology on D0, ), e.g. the
M;-topology (see Skorohod [91]).

Finite variance case: auj, = 2

The main reason for the different results of Theorems 5.1 and 5.2 is the infi-
nite variance of the lengths of the ON- and OFF-periods. Indeed, suppose the
variances of both X and Y are finite. Then Willinger et al. [106] show that
(with amin = 2) Theorem 5.1 yields fractional Brownian motion with H = 1/2
as limit process. Clearly, this is Brownian motion.

In the proof of Theorem 5.2 one can use a functional limit theorem (Theorem
V2.2 in Gut [43]), which states that a random sum of iid heavy-tailed random
variables converges weakly to stable Lévy motion. If the random variables have
finite variance, Theorem V2.1 in Gut [43] shows that the limit process will be
Brownian motion.

Brownian motion is self-similar and has independent increments. In this case
the pre-limit workload process has short-range dependence in the sense that the
corresponding autocorrelations are summable.

Equivalent result for the infinite source Poisson model

Converge of the cumulative workload process CW (Fo) (T't) to stable Lévy motion
is shown by Resnick and van den Berg [80]. Below we state their result. Define
the quantile function of Feon by

beon(2) = (1/Feon(2)) ™, >0, (5.13)

and set
_ Cfl/acon
Ocon = )

Qcon
where C,, is given by (3.2).
Theorem 5.3 Let Feon satisfy (5.6). Then, as T — oo,

CW ®oi) (T¢) —E[CW(Poi)(Tt)] My 0
A aconpon (T) QconTcon;1\V)
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where Ao, 0.00,1 4 stable Lévy motion as defined in Section 3.1.8 and M de-
notes weak convergence in D0, 00) equipped with the M -topology. Q

Notice that E[CW®F)(Tt)] = ApconTt. In the case aon < off, the result
is analogous to Theorem 5.2. Theorem 5.3 holds for any fixed A > 0; the
limit A — oo is omitted. The only difference with Theorem 5.2 is that now
the convergence of the finite-dimensional distributions is strengthened to M;-
convergence. The M;-topology is weaker than the Ji-topology (see Skorohod
[91]). As in Theorem 5.2, Jj-convergence is impossible. Resnick and van den
Berg [80] prove Theorem 5.3 for the more general case in which the cumulative
workload generated by an individual session is given by a regularly varying
function ¢. A unit transmission rate corresponds to ((t) = t.

5.2.3 Simultaneous limit regimes

There is no particular (practical or theoretical) reason why we should prefer the
limit regime in Theorem 5.1 to that in Theorem 5.2. In order to better under-
stand the interplay of the roles of the limits of M and T to infinity, we study
the weak limit behavior of the cumulative workload process in the ON/OFF
model for simultaneous limit regimes in which M and T go to infinity at the
same time. In particular, we assume that M = M(T) is some integer-valued
function such that

M (T) is non-decreasing in T and limy_,.c M (T') = oo.

For ease of presentation we usually suppress the dependence of M on T. For
example, we write Wy = Wy () and CWy = CWyy(r) for the workload- and
cumulative workload process, respectively.

We will show that if M exhibits ‘slow growth’, the finite-dimensional dis-
tributions of (CWys(T't))¢>0 have an infinite variance stable Lévy motion as
limit. If M grows ‘fast’ the limiting process will be fractional Brownian motion.
The following conditions express ‘slow’ and ‘fast’ growth of M in terms of the
quantile function b defined in (5.11).

b(MT)

Slow Growth Condition 1: lim =0,
T—oo T

Fast Growth Condition 2: lim b(MT)

T—o00 T

=x.

The next lemma provides alternate ways to express the conditions and can be
found in Mikosch et al. [66].

Lemma 5.4

1. The Slow Growth Condition 1 is equivalent to
lim MT Fuin(T) =0 or lim Cov(Wy(0), Wa(T)) = 0.
T—o0 T—o0
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2. The Fast Growth Condition 2 is equivalent to

lim MT Fuin(T) =00 or Jim Cov(War(0), War(T)) = o0
—00

T—o0

Proof. In the case of Condition 1, there exists a function 0 < e — 0 such that
Ter — oo and b(MT) = Ter. Thus

MT ~1/F in(Ter) .
Therefore, Condition 1 implies
MT Frin(T) ~ Funin(T) /Frin(Ter) — 0. (5.14)
Conversely, if 67 = MTF i (T) — 0, then using b (T) ~ 1 /Fmin(T), we get

B(MT)  b(6rb(T))
T @)

and so Condition 1 and (5.14) are equivalent. The proof for Condition 2 is
similar. The equivalence in terms of covariances follows from

Cov(Was(0), War(T)) = MCov(W (0), W(T)) ~ (const) MT Fpin(T),
where we used (5.4) in the last step. V)

From Lemma 5.4 it follows that M ~ (const) 7@~ L—l (T) is the critical
growth rate in between the ‘slow’ and ‘fast’ growth situations.
The following theorem gives the limiting process of the cumulative workload,

depending on whether Condition 1 or 2 holds. Define

_ CWn(Tt) — E[CWy (Tt)]
Vr(t) = (MT3=amin Lo (T))1/2

and
YN/T(t) _ CWy (Tt)b(_]\/_fE][w()jWM (T)] '

Theorem 5.5 Let Fon and Fog satisfy (5.1). Let og be as in Theorem 5.1 and
H = (3 — amin)/2. Let ¢, omin and 3 be as in Theorem 5.2.

1. If Slow Growth Condition 1 holds, then as T — oo

‘7T(t) M c Aamin,a'mim/@(t) s

where £% denotes convergence of the finite-dimensional distributions and
Aoin.omin,3 15 stable Lévy motion as defined in Section 3.1.3.
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2. If Fast Growth Condition 2 holds, then as T — oo
Vi (t) % 00 Bu(t),

where % denotes weak convergence in the space C[0,00) equipped with
the uniform topology and By is fractional Brownian motion as defined in
Section 3.2.7.

Q

As in Theorem 5.2 J;i-convergence to stable Lévy motion is impossible. It is
not clear whether Mj-convergence holds. In the case when Fi, and Fyg have
finite variances Theorem 5.5 holds with apin = 2 and yields Brownian motion as
limiting process for both limit regimes. The proof of Theorem 5.5 is presented
in Sections 5.A and 5.B.

It seems surprising that although a nearly continuous transition between the
‘slow’ and ‘fast’ growth cases exists, the dependence structures of the limiting
processes are completely different. Under Slow Growth Condition 1 the limiting
increment sequence consists of iid random variables, while under Fast Growth
Condition 2 it has LRD. Intuitively, this can be explained as follows. The
effect of T — oo is that the time scale is blown up. Values of ¢ that were
close to each other are far apart as T becomes large. Keeping M fixed, this
destroys the dependence structure within an individual ON/OFF process (as
in Theorem 5.2). Moreover, Lemma 5.4 shows that also under Slow Growth
Condition 1 the covariances of the workload process converge to zero. Therefore,
Fast Growth Condition 2 is necessary to preserve the dependence structure
of the workload process. In fact, Lemma 5.4 tells us that in this case the
covariances blow up to infinity. Hence, a stabilizing normalization is needed,
which according to (5.9) should be (MT3~%min L ;. (T))"/2.

A result related to Theorem 5.5 is due to Pipiras et al. [74], who consider
M iid renewal reward processes with a heavy-tailed inter-renewal distribution
(tail index a € (1,2)) and a heavy-tailed reward distribution (tail index g €
(1,2)). They investigate the weak limit behavior of the total reward in [0, T't]
for M = M(T') as T — oo, using the same growth conditions as in Theorem 5.5.
If o < B, then Slow Growth Condition 1 yields the a-stable Lévy motion from
Theorem 5.5 as limit, while Fast Growth Condition 2 results in a self-similar
[B-stable process with dependent increments. For 8 < a, (-stable Lévy motion
is obtained as limit, regardless of the growth rate of M. If the rewards have
finite variance and Fast Growth Condition 2 holds, the limit is the fractional
Brownian motion from Theorem 5.5.
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Equivalent result for the infinite source Poisson model

A result analogous to Theorem 5.5 for the cumulative workload CW (F°) in the
infinite source Poisson model can be found in Mikosch et al. [66]. The role of
M is now played by the Poisson parameter A = A\(T"). Recall the definition of
the quantile function beon from (5.13) and set

1 CQcon 2

3 — &con |2— Qcon Hcon

Ocon =

Theorem 5.6 Let Fe,, satisfy (5.6), H = (3 — @con)/2 and Feon be as above.
1. If beon(AT) = o(T), then as T — oo

CW ) (Tt) — E[CW®ON(Tt)] fias

beon (AT)

2

Aoeon1,1(t)

where ﬂ; denotes convergence of the finite-dimensional distributions and
A 1,1 s stable Lévy motion as defined in Section 3.1.3.

Qcon s

2. If T = 0(beon(AT)), then as T — oo

CW P (Tt) — E[CW Po)(Tt)]
()\T3_0‘con Lcon (T))1/2

d -~
— Ocon BH(t) ,

where % denotes weak convergence in the space C[0,00) equipped with
the uniform topology and By is fractional Brownian motion as defined in
Section 3.2.7.

Q©

Since the conditions on A are the same as Conditions 1 and 2 on M, Lemma 5.4
holds with A and beon replacing M and b, respectively. The remarks following
Theorem 5.5 also apply here.

Practical relevance

Considering a real-life computer network, what is the practical relevance of the
simultaneous limits in Theorem 5.57 Although the parameters M and T can
be interpreted as the number of connections or hosts in the network and the
time window, respectively, it is not clear which ratios M /T correspond to the
Slow Growth Condition and which to the Fast Growth Condition. However, it is
generally agreed upon that workload measurements contain LRD and certainly
do not consist of independent observations. This would indicate that “in practice
the fast growth regime applies”. This is confirmed by Cao et al. [16, 17] who
study the effect of the number of active connections on traffic characteristics.
Analyzing a large number of Ethernet and ATM traffic traces, they observe
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that the variability of the aggregated workload becomes smaller as the number
of active connections increases. Moreover, the LRD (present in all workload
series in [16, 17]) is preserved. Another issue is the question of Gaussian versus
stable marginal distributions. Guerin et al. [41], analyzing several Wide Area
traffic traces (see also Section 5.1.4), do not find conclusive evidence for one or
the other. Heyman [46], however, observes that the effect of multiplexing a large
number of TCP sources is that the workload smooths out and its marginals tend
towards a Gaussian distribution.

An anonymous referee of the paper [66] made two important remarks about
the relation between the two limit regimes and actual networking practice. First,
most measured traffic traces have been collected from relatively low bandwidth
links. This limits the range over which tail behavior can be observed, i.e. ex-
tremely large workloads are not observed due to bandwidth limitations. Sec-
ond, the vast majority of measured WAN traffic consists of TCP/IP packets.
From Section 2.3.3 we know that TCP does not allow individual connections
to grab the lion’s share of the available bandwidth on a given link, but aims
at giving each connection its fair share. Even for high-speed links of 100 Mbps
(=Megabits per second) or more, TCP imposes a maximum window size that
drastically limits the rates at which the different connections can send their
packets.

From the comments of the referee we may conclude that in the workload
measurements a regime of small M and large T, i.e. ‘slow growth’, is not
likely, either due to a relatively low bandwidth of the considered link or the
nature of TCP. This is consistent with the observed LRD and Gaussianity in
network traffic, which are properties of the limiting fractional Brownian motion
under ‘fast growth’. The tendency of TCP to amplify the LRD in an inputted
traffic stream is also observed in the simulation study by Park et al. [68] (see
Section 5.1.2). Networking arguments and modeling efforts strengthening this
hypothesis can be found in Heyman [46], Guo et al. [42], Veres and Boda [104]
and Veres et al. [105].

The relevance of Theorem 5.5 for networking practice is not limited to to-
day’s networks. In the future, available link bandwidth will range from Mbps
to Gbps (=Gigabits per second) and beyond. Moreover, we can expect proto-
cols that, in contrast to today’s TCP, will allow individual connections to grab
a highly variable amount of the available bandwidth almost instantaneously.
Hence, for future network traffic a regime of large M and small T belongs to
the possibilities. In this sense, Theorem 5.5 predicts the dynamics of future net-
work traffic depending on the developments in protocol design and networking
technology.

5.3 Network performance — a discussion
The heavy-tailed transmission durations incorporated in the ON/OFF- and in-
finite source Poisson models are responsible for a significant decrease in network

performance. This conclusion has been drawn in a number of theoretical and
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simulation studies we will discuss here.

5.3.1 Queuing results

Here we consider a buffer fed by the workload generated by M ON/OFF sources
in the ON/OFF model as defined in Section 5.1.1. The number of sources M is
taken to be fixed and instead of (5.1) we assume

Fou(z) =27 %L(z) and  Fog(x) = o(Fon(x)), (5.15)

where a > 1 and L is slowly varying at infinity. Hence, F, is regularly varying
and Fyg has a lighter tail than Fy,. The buffer has infinite capacity and the
outflow rate is r M, where r satisfies

Hon

<r<l1. (5.16)

It is clear that if » > 1 the buffer would always be empty. The left inequality
in (5.16) is a stability condition guaranteeing a ‘tendency’ towards an empty
buffer. This will be made more precise later on. We denote the buffer content
at time ¢ > 0 by Q(¢). Following Asmussen [2], Section ITI.8, we write

Q(t) = max {Q(O) + CWp[0,t] —rMt, sup (CWhy[s,t] — rM(t — s))} ,
0<s<t
where CWy[0,t] = CW)(¢) is the cumulative workload in [0, ¢] and Q(0) is an

arbitrary initial state. Since the ON/OFF processes are stationary, we have

sup (CWpy[s,t] —rM(t —s)) 4 sup (CWp[0,s] —rMs).
0<s<t 0<s<t

Since E(CWp[0,t]) = Mt pon/p, the law of large numbers and (5.16) imply
that as t =+ oo
CWum|0,t] —rMt — —oc0  a.s. (5.17)

which means that there is a negative drift in the buffer content process Q ().
Next, define

Q = sup (CWp[0,t] — rMt) . (5.18)
>0

Combining (5.17) and Asmussen [2], Proposition II1.8.2, we obtain
PQ<oo)=1 and Q1) 3Q, ast— oo.
We are interested in the rate of decay of the probability tail
P(Q>wu), asu— oo.

The following result holds.
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Proposition 5.7 Suppose M = 1, F,, and Fog satisfy (5.15) and r satisfies
(5.16). Then, as u — o0

o

P(Q > u) ~ (const) / Fon(s) ds ~ (const) u= @~V L(u). (5.19)

u/(1—r)
Q

Hence, for a € (1, 3) the distribution of the buffer content is heavy-tailed. Notice
that the second equivalence in (5.19) is just Karamata’s theorem. A proof of the
first equivalence in (5.19) involving queuing theory can be found in Jelenkovié
and Lazar [51]. An alternative proof can be given by using a result by Embrechts
and Veraverbeke [27] concerning the supremum of heavy-tailed random walks.

For M > 1 the exact rate of P(Q > u) is given in Zwart et al. [109]. Their
result is as follows.

Proposition 5.8 Suppose Fo, and Fog satisfy (5.15) and r satisfies (5.16). Set
r— MOH/N]
n=|M_ ———|+1, 5.20
[ 1- uon/l'b ( )
where [z] denotes the integer part of x. Assume that
M (w) is not an integer. (5.21)
1 — pton/pt
Then, for a certain constant K >0, as u — o0
M\ K g "
PQ > u) ~ (n> = (/ Fou(s) ds) , (5.22)
where

u
n+ (4 = 1) (tonf 1) — 7 °

Ty =

Q

From (5.22) we see that P(Q > u) is regularly varying with index n(a — 1).
Comparing (5.19) and (5.22) we see that for M sources P(Q > u) is of the same
order as the product of n probability tails in the case M = 1. It seems that an
extremely high buffer content is the result of n of the M sources being extremely
active simultaneously. The factor (') gives the total number of n-subsets of
{1,..., M}. Intuitively, this can be explained as follows. Suppose one source
has an extremely long ON-period and the other M — 1 sources have average
activity. During this long ON-period the average net-inflow into the buffer is

a1=1+(M—1)%—r
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If a; < 0 the high activity of a single source cannot cause an increase in the
buffer content. For P(Q > wu) this event is negligible. If, however, a; > 0
one extremely active source can be responsible for an extremely high buffer
content. If j sources are extremely active simultaneously over a period of time,
the average net-inflow is

ajzj—}—(M—j)@—rM.
I
Since r < 1 we have aps > 0. Following the principle “the most unlikely events

happen in the most likely way,” we assume that an extremely high buffer content
is caused by simultaneous extreme activity of n sources, where

n=min{j € {1,...,M}: a; > 0}. (5.23)

This n is the same as in (5.20). Condition (5.21) implies that a; = 0 cannot
occur. If n > 2 then P(Q > u) decays faster than in the case M = 1, i.e. mul-
tiplexing improves the performance of the queuing system. These multiplexing
gains may even be larger if some sources have exponentially bounded tails of
their distribution of ON-period lengths. In this case P(Q > u) may decrease
exponentially, even though there are sources with heavy-tailed ON-period dis-
tributions (see e.g. Boxma [12], Boxma and Dumas [13], Jelenkovié¢ and Lazar
[61], Dumas and Simonian [26] and Zwart et al. [109]). When the ON-period
distributions of all sources have exponentially bounded tails P(Q > u) decreases
at an exponential rate. From a queuing perspective, this indicates the size of
the effect of heavy-tailed ON-periods on network performance.

Queuing results concerning the infinite source Poisson model can be found
in Zwart [110], Chapter 8.

5.3.2 Simulation studies

In Section 5.1.2 we discussed the simulation study by Park et al. [68] in which
a client-server network is considered with 32 clients and 2 file servers. The file
lengths are taken from a heavy-tailed distribution. The workload is measured
at a bottleneck link between the clients and the servers. It is found that LRD is
present in the traffic measurements. Moreover, the intensity of LRD increases
as the tail parameter a of the heavy-tailed file size distribution is taken closer
to 1, which is consistent with formula (5.4) expressing the LRD in the workload
described by the ON/OFF model. Park et al. [68, 69] also consider several
performance measures of the link: throughput (in bytes per second), packet
loss rate (in percents), buffer utilization (in bytes) and average queue length (in
bytes). The effect of changes in the tail parameter a, bandwidth of the link,
buffer size and choice of transport mechanism (TCP or UDP, see Section 2.3.3)
on the performance of the network is studied. It is found that a decrease in «, i.e.
a ‘heavier’ file size distribution, results in deteriorating network performance,
while more bandwidth or buffer size increases network performance. These
effects are even bigger when instead of the reliable transport mechanism TCP
the unreliable UDP is used.
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The effect of LRD on network performance is also studied by Erramilli et al.
[29]. They consider a single server queuing system with an infinite buffer and
deterministic service times. The packet arrivals are governed by a sequence of
inter-arrival times taken from real-life Ethernet traffic measurements. Erramilli
et al. [29] construct several shuffled versions of the original Ethernet input trace
as follows. They divide the sequence of inter-arrival times in blocks of size m
and consider the internally shuffled trace in which the values within each block
are shuffled but the order of the blocks does not change, and the externally
shuffled trace in which the blocks themselves are shuffled but the order of the
values within each block is unaffected. For the original and shuffled traces the
average delay in seconds is plotted against the level of utilization of the queue.
It appears that for m relatively small the plot of the internally shuffled trace
is close to the original, while the average delay is significantly less using the
externally shuffled trace. Hence, the destruction of the correlation structure up
to lag m in the sequence of inter-arrival times does not affect the performance of
the queuing system. Moreover, correlations at lags larger than m are responsible
for the delay characteristics of the queue.

Although network performance is decreased by LRD, it must be remembered
that LRD is inherently an asymptotic notion: autocorrelations at large lags are
non-negligible. In practice, however, buffers have finite capacity and congestion
control algorithms consider only finite time horizons. Ryu and Elwalid [88]
conclude on the basis of a simulated queuing system with a finite buffer that
short-term correlations dominate long-term correlations in their influence on
the packet loss rate, even in the presence of LRD in the input stream. In this
sense, small buffer capacity combined with large bandwidth delimits the scope of
influence of LRD on network performance. See also Grossglauser and Bolot [40].

A different approach in dealing with the presence of LRD is to explicitly take
into account larger time scales for detecting persistent shifts in the overall net-
work contention. This so-called multiple time scale congestion control (MTSC)
framework is introduced by Tuan and Park [103]. In a simulated client-server
network (similar to the one considered by Park et al. [68, 69]) the application
of MTSC results in significant throughput gains. These gains increase with the
intensity of LRD in network traffic.
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Appendix

5.A Proof of Theorem 5.5: Slow Growth

5.A.1 The basic decomposition

We will use the following decomposition of the cumulative workload:

CWyn(T)=I1(T)+ II(T)+ III(T), (A1)
where
M
i(ry = Y B™min(T, (X)),

m=1

M Eg™
mr = Y Yy xm,
m=1 k=1

ITI(T)

M
— 5" max(0, 7+ X -1
m=1

m my (m)sq7 -
g e 677 >1]

Here, I(T) is the contribution of the Oth renewal intervals [0, To(m)) while I1(T)

captures [T,g'_"l), T,gm)) fork=1,..., (Tm). The term I1I(T) is needed to delete
the contribution of [T, Té{,nn)))
T

The basic idea of the proof is first to show that the terms I(T") and I1I(T)
are asymptotically negligible. This is done in Section 5.A.2. The next step

consists of replacing the counting processes 55,"” in II(T) simultaneously by
their identical means pr. After the replacement, the resulting process is a sum
of iid random variables and so classical limit theory for sums of iid random
variables comes in. The replacement described above is provided by a large
deviation result given in Section 5.C. In Section 5.D we present a bound for
regularly varying functions which is frequently used in the proof of Theorem 5.5.

5.A.2 Vanishing remainder terms

Before dealing with I(T"), we need the following lemma.
Lemma 5.A.1 If Slow Growth Condition 1 holds, then

MT? Fmin T
i MT” Fuin(T)

A sy O (4.2)

and if Fast Growth Condition 2 holds, this limit is infinite.
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Proof. Assume that Condition 1 holds. Set ey = b(MT)/T — 0 so that
erT — oo. Denoting the ratio in (A.2) by rr, we see that

Fmin (T)

o~
g erFmin(Ter)

7

and using the Karamata representation of a regularly varying function (see
Bingham et al. [9]), we obtain

T
rr ~ [er] "' exp {—/T u™t a(u) du} (A.3)

for some function a(u) = Qmin, as 4 = 00. Since 1 < amin < 2, we may pick §
so small that ami, —9d > 1 and since Ter — oo, we have for T sufficiently large,
that the right-hand side in (A.3) is bounded from above by

e exp {—(amin — 8) log(1/er)} = e%m*“_d_l )
and the right-hand side converges to zero as T — oo. The proof of an infinite

limit under Condition 2 is similar. Q

Proposition 5.A.2 For everyt >0

I(Tt) — EI(Tt) p
I)(TT‘) -0, T — .

Proof. We have
[B(MT)|*EI(T) < [b(MT)]"*M Emin(T,X{).
Using Karamata’s theorem, we obtain

MT? Fuin(T) Fon(T)
b(MT) Fmin(T) )

[BMT) ' M /0 ! P(X9 > 1) de < (const)

The first term is 0(1) by Lemma 5.A.1. The second term is equal to 1 if
Qon < Qoft- If aion > o it converges either to zero or to £. This completes the
proof. Q

Next, we show that ITI(T) is asymptotically negligible. By virtue of the Slow
Growth Condition b(MT) = o(T), we can find a function e — 0 such that

b(MT)=o(erT) and 1/log(T)=o(er) asT — co. (A.4)
For example, we could let

er = max ([b(MT)/T]"/2, [log T] /%) .

89



Lemma 5.A.3 Assume that er satisfies (A.4). Then
M P(|ér — pr| > €7 pr) =o(1) as T — o0.

Proof. First we treat the case & > (1 + er)ur. Since Z; = X; + Y; has
a regularly varying right tail there exist iid mean-zero random variables E;
concentrated on [—-EZ;, 00) and a positive number zy such that for some 8 > 0

P(Zy—EZy >z) > P(E, >z) forx>—-EZ,

and
PE,>x)=e P z>ux.

Then a stochastic domination argument shows that with mgr = [(1 + er)pr],

P(ér > (1 +er)pr) P(To+Zi+ -+ Zpy <T)

IN

P(Zy+- 4 Zpy —mru <T —mrp)

AN

(

(
P(Ei+---+Epn, <T —mgp)
P((mrVar(Ey))"Y2(Ey + - + Em,) < —ar)

pr,

where
ar = (mgpVar(Ey))~Y? (mpp —T).

Since pr = T'/p, we have for some |67| < 1, that

T+06
ar ~ (const) % ~ (const) erT"/?,
and hence for all large T
ar Z T1/6 ’

since epT'/2 > (logT)'/>T"/?> > T'/%. The classical Cramér result on large
deviations for sums of iid random variables with moment generating function
existing in a neighborhood of the origin (see Petrov [71], Theorem 3 in Chapter
VIII) gives for large T,

pr < P((mTVar(El))_l/Q(El 4+ -+ EmT) < _TI/G)
< (const) ®(~T/®) < (const) e T/,

where @ is the standard normal distribution function. Finally, since the Slow
Growth Condition on M implies M = o(T) we have

M P(¢r > (L+er)ur) < Me T/t = o(1). (A.5)
Next we treat the case &7 < (1 — er)pr. Choose
Pr=T—[1—er)ur] p~erT,
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with er obeying (A.4). Notice that as T' — oo,

_ P
B (Z1+ -+ + Zj(—epyur) — (L — er)pr] 1) = 0.

Moreover, condition (C.2) in Section 5.C is satisfied for B,, = [Bp,00) and the
sequence (Z; — p);>1 since for z large enough

2 2E(Z71{7,<,}) < (const) P(Z; > z),

as a consequence of Karamata’s theorem. An application of Corollary 5.C.2 now
shows that

Plr<(I—er)ur) = PTo+Z1+ -+ Zjg—er)ur) > T)
~ P(Zi+- -+ Zja—epyug) — [(1 — er)pur] p > Br)
~ [ —er)pr] P(Z > pr)
~ pr P(Z > erT) = (const) T P(Z > erT)

(const) Frmin(erT) 1
Y UM Famury M)

In the last step we used the fact that F;, is regularly varying with index —amin,
Proposition 0.8 (iii) in Resnick [77] and (A.4). Q

We need another auxiliary result.
Lemma 5.A.4 For all § > 0,
M [b(MT)]_l EX&T l[XET >6b(MT)] l[gTZI] —0 asT — oo.

Proof. Choose e — 0 such that (A.4) holds. Using Karamata’s theorem, we
have for large T,

MBMDI [ Py > e = prl < erpr, 0 > 1) ds
5 b(MT)
< M[b(MT)]—l/ P( max X; >x> dz
5 b(MT) i>1, li—pr|<erpr
< (const) M [p(MT)]"" erpr / Fon() do
5 b(MT)

< (const) §* 7% [b(MT)]|¥min~%ner = o(1).

Choose c7 — oo such that b(MT) = o(c;'erT). Tt follows from the proof of
Lemma 5.A.3 that

M P(|ér — pr| > erpr) = o(cz ™). (A.6)
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Let K > 0 be a constant so large that T% > ¢7b(MT) for large T. The following
bound is straightforward:

/ P(Xﬁrl[ETzl] >z, |ér — pr| > erpr) d
Sb(MT)

erb(MT)
< [ Pler -l > exur) da
Sb(MT)

o0
b [ P> 1< < (= erun) de
CTb(MT)

TK e}
+ / Plr > (1+er)pr) de + / P(X§T1[€T21] > ) dz
CTb(MT) TK

= L+L+13+1,.
Obviously, by (A.6),
M[b(MT)] ™I = (cx — 8) M P(|ér — pr| > erpr) = o(1) . (A7)

Moreover, by Karamata’s theorem,

MBMT) ', < M[b(MT)]—l/ P( max Xi>x> dx
crb(MT) 1<i<(l—er)pr

o

(const) M[b(MT)|"" ur / aypy Fonl®) 85

IA

Qmin—Qon 1+ @¥min—Qon Frnin(cr b(MT))
(const) [b(MT)] et T O(MT))

i

Using the right-hand inequality in Proposition 5.D.1, with = ¢z, t = b(MT)
and € = auin — 1 — & > 0 for some small § > 0, gives that there is a fixed tg
such that for x > 1 and t > tg

Fmin(cT b(MT)) o —(146)
FaiaoQT)) < (O =0 e

This shows that M[b(MT)]™1I; — 0.
As for the proof of Lemma 5.A.3 (see (A.5)) we conclude that
TK
Mb(MT)] I < M[b(MT)]—l/ e T4 4z = 6(1) as T — oo,
CTb(MT)

since the Slow Growth Condition on M holds. Using Markov’s inequality and
(8.12) in Theorem I8.1 of Gut [43], we have for € € (0, apn—1) and K sufficiently
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large,

o0
Iy < EXgm* 1[§T21]/ g~ %t dy
TK

(const) EX o™ Lig,>1] 7K (cton—1—¢)
— O(T—K(aon—l—e)—i-l) .
The Slow Growth Condition on M implies that M = o(T®min=1%¢)_ Therefore,
M[b(MT)]_II4 = O(T_K(acn_1_6)+amin+€) — 0(1) ’

provided K is chosen so large that K > (@min +€)/(Gon — 1 —€). Combining all
the estimates above, we finally proved the statement of the lemma. Q

Now we are ready to deal with I1I(T).
Proposition 5.A.5 For everyt >0, as T — oo

III(Tt) — EIII(TY) p
b(MT)

Proof. Fix § > 0. Define the iid random variables

X = max (o, ™ 4 xm T) Leomsy) s

&1 e
and their truncated versions
v(m) _ g(m)
Xp =Xg I[)?(T’")gab(MT)] )
By virtue of Lemma 5.A.4, it suffices to show that
M ~ ~
BT Y (X;'”) - EXT) £o.
m=1
The variance of the sum on the left-hand side is given by
M[b(MT))~?Var(Xr) < M[b(MT)]"2EX2.,

and so it suffices to show that the right-hand side converges to zero. Assume
er — 0 satisfies (A.4). Then we have

EX2

IA

S [b(MT)]* P(|ér — pr| > erpr)

o2 [b(MT)]?
+ / P(Xep > Va, |&r — pr| < eppr) da
0
= L +1.
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By Lemma 5.A.3 we have
MB(MT)] %I, = o(1).
An application of Karamata’s theorem yields that
82 [b(MT)]?
MBMT)] %, < M[b(MT)]_z/ P ( max X; > ﬁ) dz
0 li—pr|<erpr
S b(MT)?

< (const) M[b(MT)|"2erpr /0 Fon(vV7) do

~ (const) e 8* MT Fon (6 b(MT))
~ (const) §2 %= [(MT)]¥min~%ner = o(1).

This completes the proof. Vv

5.A.3 Convergence of the marginal distributions

In this section we show that the random variables II(T) converge weakly to a
stable distribution as T' — 0o. This fact and the results of the previous section,
together with a Slutsky argument, prove the convergence of the one-dimensional
distributions of V in Theorem 5.5.

Introduce the iid mean zero random variables

Jk(,m) = X;Em) - "'offZ](gm) = Ton(X]Em) - ,uon) - "'off(Yk(m) - Noﬂ’) ’

where
Ton = Noﬁ'/u and rog = ,U/on/N-
The tails of the Ji’s are regularly varying: as z — oo

P(Jp > ) ~ 12" Fon(z) and P(Jy < —1) ~ 135" For(z) .

on

Write
e

St =3 J.
k=1

The following decomposition will be useful:

M M M
1I(T) > Srim ron Y Tégn{ Leam sy = 7ot 30 T8 Ligom
m=1 m=1 m=1

= IL(T)+IL(T) + II5(T).

In what follows, we show that II; has an ampj,-stable limit whereas Il and I3
are asymptotically negligible. By Proposition 5.A.2 it follows that

[b(MT)| 'EII;(T) - 0.
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Following the argument for Theorem I5.3 in Gut [43], we obtain

ér
E(Ter Ligp>1y) = E (Z Zi+To 1[5T>1]> =T+ETolg,>y)-  (A3)

i=1
By virtue of Lemma 5.A.1, we have for large T

M M MT?Fonin(T)
m E(Te, —T) = WE(TO Liez>1]) < (const) bQIT)

Fon(T)
Fmin (T) ’

which is o(1) by the same arguments as in Proposition 5.A.2. Hence,

IL(T)—EIL(T)  To = iym(m) P

Again using the argument for Theorem 15.3 of [43], we obtain
EIL(T) = M Eér EJ, = 0.

In the remainder of this section we prove that II; has an amin-stable limit. Let
¢, omin and S be as in Theorem 5.5. Theorem 8 in Chapter IV of Petrov [71]
gives the following necessary and sufficient conditions for the sums of row-wise
iid random variables St,,,, m = 1,...,M, to converge weakly to the stable
distribution S, (¢ 0min,5,0): as T — oo, for all z > 0:

(RT) M P(St1 >zb(MT)) — C. 1+5

Qmin 2

(LT) M P(St1 < —ab(MT)) = Ca,,, ~=2

Qmin 2

(C a-min)amin x_amin ,

(C o.min)aminx—amin ,

(VA) limlimsup M [b(MT)]~*Var(St,1 1{|s.,|<eb(mT)}) =0,

0 T o

where C, is given by (3.2). Notice that Cy, _, o2mi® = 1.

Q®min ™ min

We have St,; = SO(T) — S@)(T), where

§r Er
SU(T) =ron I (X — pton) and SN(T) =rog D (Vi — prorr) -
k=1 k=1
Define
Sn = ZJka Sy(bl) = Ton Z(Xk _Non); Sy(f) = Toff Z(Yk _Noﬂ')-
k=1 k=1 k=1

The proofs of (RT), (LT), and (VA) are now presented via a series of lemmas.
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Lemma 5.A.6 If ooy < Qoft, then for all x > 0
M P(=S{}), > 2b(MT)) = o(1), asT - oo.
Correspondingly, if cof < Qon, then for all x >0

M P(-S?

] > xb(MT))=0(1), asT — co.

Proof. We will only prove the first statement. The second statement follows
by interchanging the roles of X; and Y;. Suppose aon < aog. Let D = Dr be a
positive function such that D — 0 and as T' — oo,

DM— o0 and DbMT)— . (A.9)
Let

n

)?k = Xkl[ngDb(MT)] and §7(11) = Z()?k - E)A(:) 5
k=1
and assume without loss of generality that rop, = 1. We have

pr=P(=8}); > ab(MT)) < P(-5[;) > zb(MT) — pr B(X — X)).

Using Karamata’s theorem, we have

prE(X - X)
b(MT)

D Fon(DbH(MT))

~ (const) — —/——————*=, A.10
(const) —- T (T (A.10)

Using the left-hand inequality of Proposition 5.D.1, withz = 1/D, t = Db(MT)

and € = 2 — a,, gives that there is a fixed ¢ such that for z > 1 and ¢t > to the

right-hand side of (A.10) is bounded by

(const) 1
oon—1 DM’

which is o(1) by (A.9). So we may bound the probability pr for large T from
above by

pr < P (~Var(X)ur]25()) ) > ar(2)) ,  where ar(s) = %

Using a non-uniform Berry-Esséen estimate in the central limit theorem (see
Petrov [72], Theorem 5.16) the right-hand side is bounded by

- ) E|X - EX?
Har) o) N (P21 + ar @)

(A.11)

where ® denotes the right tail of the standard normal distribution. Notice that

M Fou(MT)) \'°

ar(z) ~ (const) (ﬁ m)

96



As above we apply the left-hand inequality of Proposition 5.D.1, to obtain that
for large T
ar(z) > (const) (aon — 1) M2,

so the first term in (A.11) decreases at an exponential (in M) rate and hence,
is o(M ™). The second term behaves asymptotically as
_3 D3 Fon(Db(MT))

(const) i m . (A.12)

Using the left-hand inequality of Proposition 5.D.1, as before, gives that the
right-hand side of (A.12) is bounded from above by

(const) J D _
Qon — 1 M

This completes the proof. Q

For e — 0 satisfying (A.4), define the event
Or = {|ér — pur| < erpr}. (A.13)
Lemma 5.A.7 For all x > 0,
M P(|S7,1 — Sppg)| > xb(MT), ©7) = o(1) as T — oo.

Proof. Using Theorem 2.3 in Petrov [72], we have

P(|S11 — Sjun| > 2 b(MT), ©7) < P( S max  [S; — S > mb(MT))
|[i—pr|<erpr
< (const) P(|S[eppryl > zb(MT)/2).

Applying the same result, we also see that

P(|Sierur)l > ob(MT)/2) = P(S),. 1= S2) || > zb(MT)/2)

lerpr]

2
g
< COIlSt ZP( lerur] — [GTMT] - b(MT)) ’
i=1

where S and S® are independent copies of S and S®. Using Corol-
lary 5.C.2, we see that the two probabilities on the right-hand side multiplied
by M are asymptotic to

M erpr [(const) z~ %" Fon(b(MT)) + (const) ~** Fog (b(MT))]
~ e [(const) 2% [H(MT)]minen + (const) g~ oo (Mo —]

which is o(1). This completes the proof. Q
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Lemma 5.A.8 If aon < Qoft, then for all x > 0
M P(Spu,) £ —zb(MT)) =0(1) asT — oc.
Equivalently, if aor < aon, then for all z >0
M P(Sj,) > 2b(MT)) =0(1) asT — co.
Proof. Suppose aon < aog. We have
P(Spup) < —2b(MT)) < P(=S{}) > zb(MT)/2) + P(S{2), > zb(MT)/2).

The first probability is o(M~!) by Lemma 5.A.6. The second probability can
be treated as follows. Let & > 0 such that aon + 0 < aos. Using Markov’s
inequality and a bound for the (aon + d)th moment of sums of independent
mean-zero random variables (see Petrov [71], p.60), we obtain

M .
M P(S(Q; > .Z'b(MT)/Q) < (const) T e TS E|S(Z,)F |aon+6
[kr] [z b(MT)]oon+ [ur]
Mur  BlYoq — EYq|or?
<
< (eonst) o T aorte prr— :

which is o(1) since T'/b(T') is regularly varying with index —d&/aon.
Next, suppose aof < Qon. Again, we have

P(Sjur) > 2b(MT)) < P(S[,), > zb(MT)/2) + P(=S{.), > zb(MT)/2).

The second probability is o(M~!) by Lemma 5.A.6. As above we use Markov’s
inequality for the first probability. This completes the proof. Q

Lemma 5.A.9 If aog < aopn, then

E[b(MT)]?
lim lim sup M [b(MT)]~ / P(Spury > v3/2) do = o(1) as T = oo,
0

30 T 500

Proof. As in Lemma 5.A.8, we have
P(Spup) > Va/2) < P(S,) > Va/4) + P(=802), > Vz/4).

Let n > 0, such that aes + 17 < @on. Using Markov’s inequality (as in the proof
of Lemma 5.A.8), we obtain

(ur]

M [b(MT)]~2 /0 Frer P(SY. > z/4) dz

M [b(MT)]_2 /f [b(MT)] UT E|XOn _ EXonlaoff.q_" "
0 (\/5/4)040“-}-77

~ (const) M T [b(MT)]~2 (2[b(MT)]2)!~ (ot tm)/2

IN

(const) M T [b(MT)] e 2 (@errtn) = (1)
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as T — oo. Using the same approach we can show that for some small § > 0,
as T — o0

/GQ[b(MT)]Z/Ml_J

M [b(MT)] 2 P(-82) > Vz/a)dz =0(1).  (A.14)

0 pr]

Indeed, for some small 7 > 0 we have the upper-bound

Eb(MT))? /M 8 pr E|Yo — EY |t

M [b(MT)]2 /

; Ve
2 2\ 1—(aorr—n)/2
~ (const) M T [b(MT)]_2 (%)

MT

W M(‘s*l)(l*(aofffﬂ)ﬂ)627((10“*7/) =dr.

= (const)

By virtue of the Slow Growth Condition MT[b(MT)]~%* = o(T") and M =
o(T =147 for some small v > 0. Hence, as T — 0o

dr = o(T*),
with
K = v+n—(ar—1+v) (1=6) (1 - (aor —n)/2)
< v4+n— (g —1) (1 -8 — aex/2).

Choosing § < 1 — ao/2 and v and 7 small such that K < 0 proves (A.14).
It remains to consider

e2[b(MT)]? @)
M [b(MT)]™2 / P(=S},. > Va/4) dz.
2 [b(MT)]? /M1 =3

The approach is the same as in the proof of Lemma 5.A.6. Let D = Dr be a
positive function such that D — 0 as T — oo. In particular, we take

D=M12 (A.15)

Notice that this implies
D b(MT) - oc. (A.16)

Let

n

Vi = Yily<psmry) and S = Z(?k - E(Y)),
k=1

and assume without loss of generality that rog = 1. We have
P(=82, > Vz/4) < P(-80) > Va/4 — prE(Y - V).
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Using (A.16), we get

prEY =)  (const) D F.g(Db(MT))
b(MT)/M=072 ~ O Y2 TF L(b(MT))

(A.17)

The left-hand inequality of Proposition 5.D.1, with x =1/D, t = D b(MT) and
€ = 2 — ao gives that there is a fixed tg such that for x > 1 and t > tg the
right-hand side of (A.17) is bounded from above by

(const) 1
aog —1 DMA+0)/27

which is o(1) by (A.15). Hence, we have the following upper-bound for large T':

?[b(MT)]?

M [B(MT)]2 / P(=S), > Vz/4) do
o (MTY /M=)

2[b(MT)]? ~2)
< M [p(MT)"? / P(-32, > \/z/8) da
S[b(MT)]2 /M=)
E[b(MT)P? -3®

M [b(MT *2/ P(— 2l S p () da,
I ) e2[b(MT))2 /M-8 ([Var(Y)MT]l/2 r )

where
__ V=8
[Var(Y) pr]'/?

Using Petrov [72], Theorem 5.16, the right-hand side is bounded by

ar(z)

M 2[b(MT)]?

[b(MT))? /62[5(MT)]2/M(1_5) ®(ar(z)) dr (A.18)

E|Y — EY|3(Var(Y))=3/2
(ur)'/2(1 + ar(z))?

2 2
M e“[b(MT)]
(const) / iz
€

[b(MT)]?

2[b(MT)]? /MC=8)
where ® denotes the right tail of the standard normal distribution. Notice that

b(MT)

(M=) Var(Y) ur ) /2 (A.19)

M® Fog(b(MT)) \'*
~ (const) (—2 M) i
D? Fon(Db(MT))
As above we apply the left-hand inequality of Proposition 5.D.1, with z = 1/D,
t = Db(MT) and € = 2 — aog — 1 for some small 7 > 0. This gives that for
large T, the right-hand side of (A.19) is bounded from below by

—1) Mo\'?
(o +1 ) ) 500,

(const) ( =
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Therefore, the first term in (A.18) is bounded (for large T') by

VEF eb(MT)
8(M (=) Var(Y ) ur)'/?

< (const) M exp{—(const) (aog +1n —1)"/2M%/2D=1/2}

which is o(1) by (A.15). The second term in (A.18) is asymptotic to

E2[b(MT)]?

(const) % [Db(MT))PFog(D b(MT)) / T a5 32 de =er.
Notice that the integral has upper-bound
M(1=0)/2
(const) OOIT)
Therefore,
er < (const) D? et N (1=9)/2 w . (A.20)
Fog(b(MT))

Using the left-hand inequality of Proposition 5.D.1, withz = 1/D,t = Db(MT)
and € = 2 — a,, gives that for large T the right-hand side of (A.20) is bounded
from above by
(const)
€ (aor — 1
which is o(1) by (A.15). This completes the proof. Q

D M(1—5)/2,

The following proposition shows the weak convergence of I (T) to the marginal
distribution (at ¢ = 1) of the amin-stable Lévy motion in Theorem 5.5.

Proposition 5.A.10 Let ¢, omin and B be as in Theorem 5.5. We have
[B(MT)| ' IL(T) 3 ¢ Mg ominyp(1) as T = 0. (A.21)

Proof. We have to show (RT), (LT) and (VA) defined at the beginning of

Section 5.A.3.

Proof of (RT)

We have to show that for all z > 0

1+3
— I

M P(St1 > xb(MT)) — ¢Xmin “omin - ag T — 00.

Recall the definition of O from (A.13). By Lemma 5.A.3 it suffices to consider
the intersection of {S7,1 > xb(MT)} with 7. For § € (0,1) we have

P(Sty >ab(MT), ©r) < P(St,1— Sy > dzb(MT), O7)
+ P(S[uT] > (1—=8)zb(MT)).
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The first probability on the right-hand side is o(M~!) by Lemma 5.A.7. If
Qoff < Qon, then the second probability is o(M ~!) by Lemma 5.A.8. If oy <
aofr then, using Corollary 5.C.2, we have

on ,—1 —Qlon o —Qlon H
reon !t (1 —§) " Femg ™ if aon < aofr,

M P(Siupy > (1-8)z b(MT)) ~
( [ur] ( ) ( )) { ,rg;ng M—l (1 _ 5)—aon$_a0“ if Qon = Oloff -

(A.22)
A lower bound is given by

P(St1 > ab(MT), Or)
> P(Sr1 = Sjpey > =02 b(MT), Spupy > (1+ 8)z b(MT), O7)
> P(Spy > (1+6)zb(MT)) — P(Sr1 — Sjuy) < —62b(MT), O7)
_P(©5).

The second and third probabilities on the right-hand side are o(M ~!) by Lem-
mas 5.A.7 and 5.A.3. If aog < aon, then the first probability is o(M~1) by
Lemma 5.A.8. If ay, < aeg then using Corollary 5.C.2 gives

rQon =l (1 4 §)"%ng=%n  if apy < Qoff,
M P(Spy) > (148)zb(MT)) ~ 4 e
reenl p=t (14 6) @emg™%n  if aon = Qo

(A.23)
Notice that the different limit for «,, = aog is due to the fact that b is the
quantile function of Fyg in this case.
Letting 6 — 0 in (A.22) and (A.23) yields, as T — o0

0(1) if Qon > Qoff,
M P(St1 > zb(MT)) ~ < rlenfp=t g% if agy = ao,

roon ,u’l g~ Gon if aon < Qoff.

This completes the proof of (RT).

Proof of (LT)

We have to show that for all z > 0

7 %min o as T — oo.

M P(Sr; < —zb(MT)) — ¢Xmin #

As before, we consider the intersection of {St;1 < —2b(MT)} with ©r. For
0 € (0,1) we have

P(ST,l S —T b(MT), ®T) S P(ST71 - S[MT] S —ox b(MT), (")T)
+ P(Sjp) < —(1 - 8)zb(MT)).
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The first probability on the right-hand side is o(M~!) by Lemma 5.A.7. If
aon < Qoff, then the second probability is o(M~!) by Lemma 5.A.8. If apg <
Qon, then applying Corollary 5.C.2 gives

M P(Spu, < —(1=8)zb(MT)) ~rSgfp ! (1 —8) g o, (A.24)
On the other hand,
P(Stq < —zb(MT), Or)
> P(St1— Sjup) L 02b(MT), Sy < —(146)2b(MT), O1)
> P(Spup < —(1+468)zb(MT)) — P(St,1 — Sjup) > 02 b(MT), OT)
—P(0%).

The second and third probabilities on the right-hand side are o(M ') by Lem-
mas 5.A.7 and 5.A.3. If apn < o, then the first probability is o(M 1) by
Lemma 5.A.8. If a,g < aon, then applying Corollary 5.C.2 gives

M P(Spup) < —(148)zb(MT)) ~ rigfpu=" (14 §)~ % g%, (A.25)
Letting 6 — 0 in (A.24) and (A.25) yields, as T — oo
o(1) if agn < Ao,

M P(Sp1 < —ab(MT)) ~ {

Qoff ,, —1 .— 3
rogt T xT " if aog < aon.

This completes the proof of (LT).

Proof of (VA)
We have to show that

lim limsup M [b(MT)]~2 Var(Sr,1 L{|Spa|<eb(mT)}) = 0.

30 Tsoo

We have

Var(Sz,1141spq<esmuryy) < B[Sl 1{spal<eb(mr)})

BT
/ P([Sza)? > @) da
0
BT
= / P(ST’l > \/E) dz
0

E2[b(MT))?
+ / P(Sp1 < —V/x) dx.
0

In our proof we will only consider the first integral. The second one can be
treated analogously. It suffices to intersect {St1 > /z} with O by virtue of
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Lemma 5.A.3. Combining the upper-bound in the proof of (RT) with the proof
of Lemma, 5.A.7, we obtain the following upper-bound:

M (M)
W/o (const) P(|Siez | > vz /4) do
M 2[b(MT))?
* W/O P(Sjur) > V7/2) dz .

As in the proof of Lemma 5.A.7, we can use a symmetrization inequality and
Corollary 5.C.2 to show that the first term is 0o(1) as T' = oo. If agn < o
then, using Corollary 5.C.2, we have

M E[b(MT)]?
W/o P(Siug) > VT /2) dz
MT 5 .. L
~ (const) I © [B(MT)]? Frnin(b(MT))

~ (const) €27 =0,

as € | 0. If aor < @on, then the second term vanishes by Lemma 5.A.9. This
completes the proof of (VA). V)

Now an appeal to the decomposition (A.1), Propositions 5.A.2, 5.A.5 and 5.A.10
in combination with a Slutsky argument proves the convergence of the one-
dimensional distributions of the normalized cumulative workload process Vr to
amin-stable distributions.

5.A.4 Convergence of the finite-dimensional distributions

In this section we complete the proof of the first part of Theorem 5.5 by showing
that the finite-dimensional distributions of I1; (T't) converge to aumin-stable Lévy
motion. By the Cramér-Wold theorem, we have to show the following. Let
n>1,a1,as,...,a, € Rand t1,t2,...,t, > 0. Then

n

ZaiIIl (th) —d> c Z aiAamin,gmimﬂ(ti) as T — oo.
i=1

i=1

It is easier to show convergence for the increments of the IT(T't) process. For
illustrational purposes we only consider I1;(Tt;) and I, (Tts) — I, (Tt;). First
we prove the following lemma.

Lemma 5.A.11 Let ay,a2 € R, to > t1 > 0. Define

[HTtl] [Hth]
Z;l) = Z J,gm) and Z;z) = a Z J,gm).
k=1 k=[pre, 41
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Then we have as T — oo, for all x > 0
M Pz + 22 > b(MT)) ~ M P(ZY) > ab(MT))  (A.26)
+ M P(Z? > zb(MT)).

Proof. Suppose that a; > 0 and as > 0. If aog < @op, it follows from the proof
of (RT) that both the left-hand side and right-hand side of (A.26) are o(1).
Suppose aon < aofr. Since, for § € (0,1/2),

P(Zy) + 2 > xb(MT)) < P(ZY) > (1 - 6)zb(MT))

+ P(Z? > (1 - 6)zb(MT))

+ P(ZY) > sz b(MT)) P(Z > sz b(MT)),
we have by Corollary 5.C.2

limsup M Pz + 22 > zb(MT))
T—os M P(Z8) > zb(MT)) + M P(Z8? > zb(MT))

< timeup M Pz > (1= 8)zb(MT)) + M P(Z?) > (1 — §)zb(MT))
= T M P(Z) > zb(MT)) + M P(Z$) > zb(MT))

= (1—8) %", (A.27)

On the other hand, for § € (0,1/2)
Pz + 7P > 2 b(MT))
> P(ZY > (14 8)ab(MT)) P(|2?| < 6z b(MT))
+ P22 > (1+ 8)zb(MT)) P(|ZV| < 5z b(MT)),
so we have by Corollary 5.C.2

- M Pz + 22 > zb(MT))
Tooo M P(ZY) > 2b(MT)) + M P(282 > zb(MT))

o i M Pz > (14 8)zb(MT)) + M P(Z? > (1 + 6)z b(MT))
T Too M P(Z¥) > zb(MT)) + M P(Z$) > zb(MT))

= (1+46)7n. (A.28)

Letting 6 — 0 in (A.27) and (A.28) completes the proof. For negative a; the
Q

proof is similar.
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Proposition 5.A.12 Let aj,a2 € R and ts > ¢, > 0. Then, as T — oo
a1 IT1(Tt1) + ao(II (Tty) — I (Tty))
4 a1 ¢ Mg omin,3(F1)
+ a2 (€ Aapin,omin.8(t2) = € Mayin,0min,8 (1)) -

Proof. Assume that a; > 0 and as > 0. Define

E(m) g(m)

Zrm =ar MD) S IM 4o T Y ™
k=1 k=£{) 41

According to Petrov [71], Theorem 8 in Chapter IV, we have to show that as
T — oo, forall z >0

1 | ‘ |
(RT2) M P(Z7, >x) = ™ %ﬂ [af™ ™t + ag™™ (t2 — t1)] ==,

1-— , ) )
(LT2) M P(Zry <) = ™ — b [af™nty + ag™n (ty — t1)] 2~ %

(VA2) limlimsup M Var(Zr, 1{|ZT,1\<€}) =0.

0 Tso00

We will only give the proof of (RT2). The proof of (LT2) is analogous and
(VA2) follows in the same way as in the proof of Proposition 5.A.10. Let
er — 0 satisfy (A.4). Since we know from Lemma 5.A.3 that as T' — oo

M P(|xith - /J/th| > 6T,u/th) = 0(1)7 .7 = 1725
we only have to consider the intersection of {Z7,1 > x} with the event
Or = {|ziry; — pre;| < erpry;, j=1,2}.

For § € (0,1) we have

I [erey]
P(Zry > ,0r) < P(m[ZJk - > Jk] > g.’L’b(MT),QT)
k=1 k=1
ETiq [Tey] 5
+ P(a2[ Z Jp — Z Jk] > 51‘ b(MT),@T)
k={T:,+1 k=[pre; |+1
[Brey] e
+ P(a1 Yo Jita Y Gi>(1- 6)mb(MT)) .
k=1 k=[pre, 141
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The first and second probabilities on the right-hand side are o(M ~!) by Lemma
5.A.7. By Lemma 5.A.11, the third probability is asymptotically equivalent to

[urey] [ureg]=[pTe,]
P(a1 S Je>(1- 6)xb(MT)) + P(ag Y n>- J)xb(MT)) .
k=1 k=1

We apply Corollary 5.C.2 to M times the above probabilities and find the esti-
mate

o(1) if aon > aofr,
lim supM P(ZT71 > .Z') < ’I‘gﬁ’“g u_l 01,2 ™% if aon = Oloff (A29)
T—o0
rg‘;;“ufl Cip x~%m if aon < Qof,
where

01’2 = a‘f“‘tl + ag“ (tz — tl) .

The >-analogue of (A.29) can be found in the same way as in the proof of Propo-
sition 5.A.10. This completes the proof. If a; are not both positive, then the
right-hand side of (A.29) is different of course. The proof, however, is similar. Q

The limit process has independent increments and stable marginal distributions.
From the proof of Proposition 5.A.12 it follows that it has stationary increments.
Therefore, the limit process is stable Lévy motion.

Remark Notice that the independent increments of the limit process arise
in a very natural way. We used the decomposition (A.1) and showed that the
contributions of the Oth renewal interval and the remainder term I71(T) vanish
in the limit. We are left with Il (T"), which is a random sum of iid heavy tailed
random variables. Basically, the counting process {7 can be replaced by its
mean pr, since values far from the mean are asymptotically negligible. This
means that for large T, 111 (T') behaves like a sum of iid random variables and,
hence, has independent increments.

5.B Proof of Theorem 5.5: Fast Growth

Set,
dr = [MT?%min [, 0 (T2,

and .
G = / (W™ — EW™) du .
0
By Lemma 5.4, Fast Growth Condition 2 is equivalent to o(dr) = T, since

d?T = [M T Frin(T)]*2.
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Now

M
Vr(t) =dpt G
m=1

Convergence of the one-dimensional distributions is established in the following
proposition.

Proposition 5.B.1 Let og be as in Theorem 5.5, H = (3 — amin)/2 and By be
fractional Brownian motion as defined in Section 3.2.6. Then, for every t > 0,

Vr(t) 5 N(0,02t3~2min) £ 5y By (t). (B.1)

Proof. In Petrov [72], Theorem 4.2, we find the following necessary and suffi-
cient conditions for (B.1): as T — oo

(PRO) M P(|Grt| > €edr) =0 for all e >0,
(VAR) M d7* Var(Gri 1[Gy <r ar) = 0gt> > for some 7 > 0,
(EXP) M d;' E(Gri1{Gr<r dr) — 0 for some 7 > 0.

(PRO) follows from the fact that P(|Gr| > € dr) = 0 for large T', since
T = o(dr) and |Gr| < T a.s. From the same observation it follows that the
indicator functions in (VAR) and (EXP) are equal to one for T large enough.
The proof of (EXP) now follows from EG7; = 0. Finally, (VAR) follows from
(5.9). Q

Now, it is only a small step to prove convergence of the finite dimensional
distributions of Vr. We only consider 2-dimensional convergence, since the
general case is completely analogous. We have to show that, for a;,as € R and
ta >t >0,

M
dr' S [aGEY + a:GY1 % ay o0 B(t) + az 00 Balts) -
m=1

Again using Theorem 4.2 in Petrov [72], one has to show the statements cor-
responding to (PRO), (VAR) and (EXP) above. The proofs of (PRO) and
(EXP) follow in the same way as in Proposition 5.B.1. For (VAR) we have to
show that for t; <t;,as T — o0

2
M d7? Cov(Gry, ,Gri,) — %" [22 4 22 _ (1, — 1,)22]  (B.2)
= COV(O’O BH(tl),O'o BH(tQ)) .

But this follows from

1
Cov(Gry, Gre,) = 3 [Var(Gre,) + Var(Gry,) — Var(Gre, — Gty )]
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the fact that G has stationary increments and (5.9). Therefore, the finite di-
mensional distributions of Vi converge to those of fractional Brownian motion.

It remains to show that the family of stochastic processes Vr is tight in
CJ[0, K] for any fixed K > 0. We will show that for small w > 0 and T' > T*

M
2
E‘d}l > G(TTZ)| < (const) u'*e,
m=1

for some small € > 0. Then Theorem 12.3 in Billingsley [7] gives the result.
According to (5.9) we have for T large enough
2 M EG2
=_ E 2 — Tu
dz. Cra T3—min i (T)

EG3.,
BGS.

M
E‘d}l e

m=1

§2U§

By (5.9) we know that the function EG?2 is regularly varying with index 3 —amin.
Using the left-hand inequality of Proposition 5.D.1, with = 1/u, t = Tu and
some small € > 0 such that 3 — amin — 2¢ > 1, gives that there is a fixed o such
that for u <1 and Tu > tg

EG%, P
EG3 " 1-¢

3—Qmin—€

For Tu < ty we have for large enough T

EGZ., (Tu)?

<
T3—omin [ o (T) — T3—minL,;0(T)
< (Tu)'e t3=*
= T3—omin L (T)
_ T'— B emin =) e o l+e
Lmin (T) 0

< t(l)—s u1+5 .

Since 3 — amin — € > 1 + € we have for T large enough and u < 1

M 2
E‘d;l 3 Gg@\ < max(202/(1 — ), t17°) ul*e.

m=1

This completes the proof. Q

5.C Large deviations of heavy-tailed sums

We present a large deviation result which is frequently used in the proof of
Theorem 5.5. Let (X, k > 1) be iid random variables with distribution F such
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that
F(z) =2 *Ly(z), >0, forsomea; >0 and L; slowly varying, (C.1)

and denote by

Snz)?1+"'+Xn7 n>1,

the corresponding partial sums. Define
pa(z) = 272 / u® dF (u).
lu|<z

The following large deviation result is due to Cline and Hsing [18].

Proposition 5.C.1 Let 3, — oo such that Sy, /B, £o. Suppose By, C [Bn,00).
If the condition

lim sup ‘n 112(z) ln(nﬁ(m))‘ =0 (C.2)
n—=x® zeB,
holds, then
P(Sn
lim sup PlSn>2) 1‘ =0. (C.3)

n—ep, | nF(z)

Q©

Remark. Writing M,, = maxkzl,___ﬂ)?k for the partial maxima of the X-
sequence , we see that we can replace nF(z) in (C.3) by P(M,, > z). This means
that the large deviation {S, > z} is essentially due to the event {M, > z}.

A consequence is the following result.
Corollary 5.C.2 In addition to (C.1) assume that EX =0 and either
F(—z)=2"*Ly(x), >0, as>a1, a1 € (1,2), Lo slowly varying,

or
F(—z)=0 for x > xg, some zo > 0.

Then (C.3) holds with B, = anhy and By, = [Bn, 00) where (hy) is any sequence
with hy, 1 00 and (ay,) satisfies nF(ay,) ~ 1.

Proof. Since (a,'S,) weakly converges to an «a;-stable distribution relation
BtS, £ 0 is immediate. Moreover, by Karamata’s theorem

p2(z) < (const) P(IX|>z), x>0,
and so (C.2) is satisfied since

n pa(z) In(n P(X > B,)) < (const) n P(|X| > B,) In(n P(|X| > B,)) = 0.

This concludes the proof. Q
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5.D Bounds for regularly varying functions
Let U(x) be a regularly varying function with index p € R, i.e. for x > 0

. Ultr)
oo Ut)

p

The following result can be found in Resnick [77], Proposition 0.8 (ii).

Proposition 5.D.1 Take € > 0. Then there is a fized tg such that for
z>1andt >ty

Ultz)

0@ (-+e)amte.

(1-e)z’c <

In Bingham et al. [9] these bounds are called the Potter bounds.
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S1x
Extremal Behavior of
ON-Periods

In this chapter, we will use the framework of the ON/OFF model to study
the number of exceedances by the sequence of ON-periods (Xl-(m)). We use a
threshold 7 which has an infinite limit in 7" and adopt the notation introduced
in Section 5.1.1. Instead of (5.1), however, we assume that as x — oo

Fon(z) =27 %L(x) and Fog(z) = o(Fon(x)), (6.1)

where a > 1 and L is slowly varying at infinity. Hence, Foy, is regularly varying
and Fog has a lighter tail than Fy,. As before, ON- and OFF-periods have
means flon and pog, respectively, and g = pion + fofr-

The number of exceedances is counted up to time 7', which means that we

only consider the completed ON-periods Xl(m), . ,Xg((rﬁl)) | and
(m)_
min(T — Sg';)) . , X ((Tn))), for m =1,..., M. The total number of exceedances
T = T
up to time T is given by
M i -1
Ar =" | 30 1preo(X™) +1[”,00,(min(T—sﬁ(;’;))_1 ,XE(;';)))) . (6.2)
m=1 i=1

We are interested in the limit distribution of A7 as T' — oc. It is clear that the
ON-periods Xi(m) and the counting process ETm) are heavily dependent. From

the definition of £&/™ in (5.3) it follows that

Xl(m)a---aX(Zln)) ,min(T—S(;’?n)) 7X((T:ln)))§T’ m=1,...,M.
T -1 gT -1 §T

This implies that the threshold xz7 must be less than T to obtain a non-
degenerate limit for Ar.
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We study the case M = My and distinguish between fast and slow growth
of M. Recall the Slow- and Fast Growth Condition from Section 5.2.3, where
b is the quantile function of Fy,. If M satisfies the Slow Growth Condition we
obtain a Poisson limit for A7, for certain thresholds x7. The intuition behind
the proof is as follows. Define

M oET -1 e

M
A= N 1™ and AP =Y 1p,.00(X™).
m=1 i=1 m=1 i=1
(6.3)
Observe that for all w,
AR < Ar < AR (6.4)

As in the proof of Theorem 5.5, with Lévy motion in the limit, it is possible
to replace all §(Tm) by their means pr. For large T, the distributions of A
and A7" are approximately binomial with M[T/u] trials and success proba-
bility Fon(z1). The Poisson approximation to the binomial distribution then

guarantees A'>"P 4 Poi(1/u) (and by (6.4) also Ar 4 Poi(1/u)) if
T — 1
EAlq?’llp ~ M ; Fon(zT) — ; as T — .

This implies 7 ~ b(MT). Moreover, since the Slow Growth Condition is
satisfied, zr = o(T).

For 1 < a < 2, there is a clear connection with Theorem 5.5. Let z,, be such
that nFo,(z,) ~ 1, as n — oo, i.e. x, ~ b(n). Since F,, is regularly varying
with tail parameter «, as n — oo

'771:1 Z(Xz - Non) _d> Sa, (6'5)
i=1

where S, is a totally skewed to the right a-stable distribution. Also, as n — oo
z,; ! max(Xy,...,X,) 4 d,, (6.6)

where P(®, < y) = exp{—y“} is the Fréchet distribution. Finally, due to the
Poisson limit theorem, the definition of x,, guarantees that as n — oo

n

3 Lo o0 (Xi) 5 Poi(1) . (6.7)

i=1

For a > 2, (6.6) and (6.7) still hold, but (6.5) translates into the Central Limit
Theorem where the normalization is \/nVar(X) (if @ = 2 and EX? = 0 a
different normalization has to be used).

If M satisfies the Fast Growth Condition the situation is more complicated.
In order to apply the Poisson limit theorem, we must have EAp ~ (const).

Since f(Tm) cannot be replaced by ur, there is no straightforward method of
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calculating EA7. However, notice that §(Tm) is a stopping time with respect to
the filtration

F™ = oD, XM ™ XM vy n> 1,
Therefore we also include the ON-periods X ((m)), which allows us to use Wald’s

identity for the expectation of random sums (see Resnick [78], Section 1.8.1 or
Gut [43], Theorem 15.3). We consider the following number of exceedances:

(m)
Ar = Z 2 Lar,) (X(™). (6.8)

m=1 i=1

We need the restriction Xi(m) < T to obtain a non-degenerate limit for Ay.
Using Wald’s identity, we have

EA\T = M ; [Fon(xT) _FOH(T)]
= T [Fonlar)
_Mumm[mm q. (6.9)

Since the Fast Growth Condition holds, MT Fo,(T) — oc. To have EAp ~
(const), we must choose 7 such that Fon(z1) ~ Fon(T). Using the mono-
tonicity and regular variation (see Resnick [77], Proposition 0.8 (iii)) of Fop, we
see that x7 ~ T must hold. Moreover, since x7 < T, we can write x7 =T — ar
where ar is a positive sequence satlsfylng at = o(T). We obtain a Poisson limit
for Ar by balancing M and ar such that EAr ~ (const).

It appears that, if M satisfies the Fast Growth Condition, the space where
exceedances can occur must be chosen very small in order to obtain a non-
degenerate limit. Since the ON-periods cannot be larger than T, there will be
more and more of them near T as M increases. The faster M grows, the smaller
the region [T' — ar,T) has to be to ensure a non-degenerate limiting number
of exceedances. A large M must be compensated by a small ar. Thus, for M
very fast, Poisson convergence of Ar is due to the number of ON- periods with
lengths Whlch are practically indistinguishable from 7.

In Section 6.1 we consider the case when M satisfies the Slow Growth Con-
dition. We use the theory of point processes to show that the number of ex-
ceedances of the threshold z7 = b(MT) = o(T') converges to a Poisson Random
Measure. We apply this result to show that the number of exceedances up to
time T't converges weakly to a homogeneous Poisson process in (D[0, 00), J1) as
T — co.

In Section 6.2 we consider the case when M satisfies the Fast Growth Con-
dition, using point processes as in Section 6.1. We obtain convergence to a
Poisson Random Measure for a threshold 7 = T — ar with ar = o(T") under a
balancing condition on M and ar.
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In Section 6.3 we show that

obeys the Central Limit Theorem under the condition that

MT[Fon(zr) — Fon(T)] = 0.

This ensures an increasing number of exceedances. Here, M does not have to
satisfy a particular growth condition.

In Sections 6.A-6.C proofs of the results in Sections 6.1-6.3 can be found. Sec-
tion 6.D contains theorems on weak convergence of a sequence of point processes
to a simple limit. Finally, Section 6.E contains a result needed in the proofs
mentioned above. The analysis in this chapter was done in Stegeman [94].

6.1 Slow Growth

Here we consider the case where M is either fixed or M = Mt — oo is a
non-decreasing integer-valued function satisfying the Slow Growth Condition,
i.e.

b(MT)

Slow Growth Condition: lim
T—o0

=0 <= lim MT Fo(T)=0,
T—o0

where b is the quantile function of F,,. We derive the limit distribution of

Ar (see (6.2)), which is the total number of exceedances, up to time T, by

completed and running ON-periods of all M sources. The threshold z7 is such

that as T — oo

M T Fo(z7) ~ 1. (6.10)

Notice that zr ~ b(MT). Moreover, since the Slow Growth Condition holds,
we have z7 = o(T).
We use the theory of point processes to derive the limit distribution of Ar.

Recall the definition of the stationary renewal sequence ( ,(lm)) from (5.2). For

T > 0 we define

M oo M oo
Nlo — E E € and NP — E E €
™1, XM f2g T T /T, X feg
m=1 i=1 m=1 i=1
(6.11)

which are point processes on the state space E = [0, 00) x (0, 00]. For (u,v) € E
and C x D C E, the Dirac measure ¢ is defined by

1 if (u,v) € C x D,

Eu)(C x D) =
(u)(C D) {0 if (u,0) ¢ C x D.
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For fixed T, the point process N1 resembles the point process of exceedances
(see Embrechts et al. [28], Example 5.1.3). The difference is that N1¢ also takes

into account the ‘real’ times, in the form of the renewal sequences (T,(Lm)), at
which the exceedances occur. An additional complication is that the X i(m) and
T{™ are heavily dependent. Let Al and A% be defined by (6.3). Notice that

Mo -1

Z Z l[wT,oo) (Xz(m)) = A}197

m=1 i=1

NP ([0,1) x [1,00))

M ES™
NzP([0,1) x [1,00)) = S Lopo) (X)) = 43P
m=1 i=1

Let M,(E) denote the space of all point measures defined on E, equipped with
the vague topology (see Resnick [77], Section 3.4). We will show that both
N¥ and NP converge in distribution to a Poisson Random Measure (PRM)
in M,(E). Recall that for a PRM N on E with mean measure v, N(A) has a
Poisson distribution with expectation v(A) for any Borel set A C E, and N(A4,)
and N(A;) are independent if A; and A, are disjoint.

Let L denote Lebesgue measure. We have the following result.

Theorem 6.1 Let F,, and Fog satisfy (6.1). Suppose M satisfies the Slow
Growth Condition and xr satisfies (6.10). Then, as T — oo,

NeAN  and NP SN in My(E),

where N is PRM with mean measure p~ 'L x v and, for 0 < a < b,
b
via,b) = / o (@D g,
a

Q

Notice that, since p=1(IL x v)([0,1) x [1,00)) = p~!, Theorem 6.1 implies that
as T — oo
Al S Poi(p™")  and A S Poi(p7l).

By (6.4) also Ar 4 Poi(u~'). The proof of Theorem 6.1 can be found in
Section 6.A. In Figure 6.1 the exceedances of simulated series of ON-periods are
depicted for My = log(T).

Next, we use the convergence of N} and N;” to a PRM to show that the
number of exceedances up to time 7't by the double array X z-(m) converges to a
homogeneous Poisson process as T — 0o. Again we assume that there are M
iid sources, where M is either fixed or increasing as T — co. In the latter case
we also suppose that M satisfies the Slow Growth Condition. The total number
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Figure 6.1: Tllustration of the exceedances of simulated series of ON-periods
under the Slow Growth Condition. Both F,, and F,g are Pareto with tail
parameters @« = 1.2 and 1.8 and means po, = 3 and pog = 5, respectively.
Here M7 =log(T) and zr is chosen such that MT Fo,(x7)/1n ~ 10. It is clear
from the plots that the number of exceedances stabilizes as T becomes large.
Moreover, the exceedances do not appear in clusters, which is what one might
expect in the case of a Poisson limit.
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of exceedances up to time T't is given by

M [ -1
Ar()) =0 | 2 loroo)(X™) 4 Lgp oo (min(T = S5 X ()
m=1 i=1 Tt Tt

We assume that the threshold zr satisfies (6.10). Notice that the processes Ar
contain more information on the times when exceedances occur, while N} and
NP hold more information on their sizes.

We have the following result.

Proposition 6.2 Let (Z(t), t > 0) be a homogeneous Poisson process with
intensity u=*. If M satisfies the Slow Growth Condition and xr satisfies (6.10),
then as T — oo

(Ar(t), t>0) 5 (Z(1), ¢ > 0),

where % denotes weak convergence in the space D0, 00), equipped with the J;-
topology.

Proof. From Theorem 6.1 it follows that the families of point processes N( - x
[1,00)) and N;P(- x [1,00)) converge weakly in M,([0,00)) to N(- x [1,00)).
Define for t >0

(m)

Mo -1 M &7
AO =D Y lpreX™)  and AP =D D Lar e (X™).
m=1 =1 m=1 i=1

Since
AR(t) = Np([0,8) x [l,00))  and  A7P(t) = N°([0,1) x [1,00)),

Alo and AP are the corresponding families of cumulative processes. Notice that
for all t > 0 and all w

AR(t) < Ap(t) < AP(1).

The result now follows from these bounds, Daley and Vere-Jones [22], Lemma
9.1.X, and the fact that N ([0,t) x[1, 00)) is a homogeneous Poisson process with
intensity p=1. Q

Remark An alternative proof of Proposition 6.2 is as follows. Convergence
of the finite-dimensional distributions follows from Theorem 6.1 by considering
sets [0,t5) x [1,00) with t; >0, j =1,...,n, n > 1. For J;-tightness in D0, k],
k > 0, the conditions formulated by Gut and Janson [44] can be checked.
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6.2 Fast Growth

In this section we derive the limit distribution of the number of exceedances if
M satisfies the Fast Growth Condition, i.e.

b(MT _
Fast Growth Condition: lim (MT) =00 <= lim MTFu,(T)=00.

T— o0 T—oo

We consider the number of exceedances given by /TT in (6.8), where ar is a
positive sequence satisfying ar = o(T). We have
T Fon (T - GT)

Eﬁ :M—FHT — 7 1
T y oD Fon(T)

For any M satisfying the Fast Growth Condition we choose ar such that EAp ~
(const). An immediate consequence of regular variation of Fo, (see Resnick [77],
Proposition 0.8 (iii)) is that Fon(T — ar)/Fon(T) = 1+ o(1), but in order to
have EAr ~ (const) we need to know the rate at which the o(1) term converges
to zero. This requires to impose a second order regular variation condition on
Fon. In practice, however, such a condition often cannot be verified. Therefore,
and since we are only interested in a qualitative characterization concerning the
limit of A7, we will from now on assume that for some zy and some constant
c>0,

Fon(z) =ca™® forz > g . (6.12)

As before, @ > 1 and Fog(z) = o(Fon(z)). Then, for T large enough

Bir =M L F (1) {(1 - a—T)_a - 1] .

m T
Using a first order Taylor expansion, we obtain
~ o T — art ar
By = M Fo(T) [a? +o (?)]

= % M ar Fou(T) + o(M ar Fou(T)).

Therefore, we choose a7 such that

ar=0(T) and Mag Fon(T)~1. (6.13)
In this way,
lim EAp =2
T—oo M

We will use weak convergence of point processes to a PRM to show that A\T &
Poi(ap™!). Define the point processes

M
ﬁT _ Z J/\\fq(wm) ’
m=1
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where
o0
G(m) _
Np™ = 2571-(:"3/7’, (T-x{™)/ar *
=1

Let E =[0,00) x (0, 1] be the state space of Nr. Notice that

Mo
Nr(@0,1) % 0,1) = 37 3 Lirapry(X{™) = 47
m=1 =1

In the following theorem we show that Nr weakly converges to a PRM.

Theorem 6.3 Assume F,, satisfies (6.12). If M satisfies the Fast Growth
Condition and ar satisfies (6.13), then as T — oo

Ne 4N in My(E),

where N is PRM with mean measure ap 1L x L. Q

Since ap~H(L x L)([0,1) x (0,1]) = ap~!, Theorem 6.3 implies that as T — oo

M €
Ar =37 Yroapmy(X™) 5 Poi(ap™).

m=1 i=1

(m)
T

The proof of Theorem 6.3 is contained in Section 6.B. In Figure 6.2 the ex-
ceedances of simulated series of ON-periods are depicted for My =T.

Remark In Figure 6.2, almost all exceedances in the plots with 7" = 5000 and
T = 10000 are due to the ON-periods Xg(fn)). This can be seen as follows. Let
T

m

ne{l,..., gqm) —1}. By definition Tﬁ(;nzl < T and hence the maximum length
of an ON-period X{™ is T — T,(LT%. For an ON-period X ™ exceeding T we
must have T—T,(LT_"% > xr, which is equivalent to Tff_”i < T —z7. In the plots we
normalized the time scale to the interval [0, 1]. Hence, for any ON-period X z.(m)

exceeding z7 and starting at a time later than (T — z7)/T, we have i = g,,m).
For the plots with T' = 5000 and T' = 10000 we have (T' — z7)/T = 0.134 and
0.077, respectively. So for T' = 10000 all 7 exceedances are due to the ON-

periods Xg(("l)) . For T' = 5000 this is true for at least 11 of the 13 exceedances.
T

This raises the question as to whether the same holds for A\T, ie. as T — oo,

does
M

> Ur—arn)(X () 5 Poi(ap™") 7
T

m=1

We were, however, not able to obtain a conclusive answer.
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Figure 6.2: Tllustration of the exceedances of simulated series of ON-periods
under the Fast Growth Condition. Both F,, and F,g are Pareto with tail
parameters o = 1.2 and 1.8 and means po, = 3 and pos = 5, respectively. Here
Mg =T and z is chosen such that MT[Fon(x1) — Fon(T)]/1t ~ 10. To make
the plots more clear, only the ON-period lengths that lie in [z7,T] are depicted.
As in the slow growth situation the number of exceedances stabilizes and there
are no clusters, which is consistent with a Poisson limit.
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The following result is analogous to Proposition 6.2. Since the proof is similar
it is omitted. Define for ¢ € [0, 1]

M ESY

Ar® =33 lrear o (X™).

m=1 i=1

Proposition 6.4 Assume F,, satisfies (6.12). Let (Z(t), t > 0) be a homo-
geneous Poisson process with intensity ap~'. If M satisfies the Fast Growth
Condition and ar satisfies (6.13), then as T — oo

(Ar(t), t>0) S (2(), t > 0),

where % denotes weak convergence in the space D[0,1], equipped with the J;-
topology. Q

6.3 A Central Limit Theorem

Here we show that the number of exceedances

M Eg™
3 1 (X™)
m=1 i=1

satisfies the Central Limit Theorem for certain thresholds z7 — oo. The number
of sources M = Mt — ¢ is a non-decreasing integer-valued function. Together,
M and z7 have to satisfy

27 <T and M T (Fon(zr) — Fon(T)) = 0. (6.14)

The latter is needed to have an increasing amount of exceedances (see (6.9)).
Define

T = % Z(m) _ i Ef(iz) [l[zT,T](Xz'(m)) - (Fon(xT) - Fon(T))]
e T [MT (Fon(27) — Fon(T))]1/2

m=1

Our goal is to show that Z7 has a Gaussian limit as 7' — oco. In doing so we

will use the central limit theorem. Since each §§~m) is a stopping time, we have
EZr =0. Using Theorem I5.3 in Gut [43] and the fact that

Var(lipr,1)(X1)) = (Fon(21) = Fon(T))(1 = (Fon(21) = Fon(T)))

~ Fon(zr) = Fon(T),

we obtain M B(Er) Var(1 (X))
_ T) Varlfer, r\A1)) 4
Var(Zr) = 30 Fon(ar) — Fon(T)) 1 -

123



Notice that, if we replaced each §(Tm) by pr, Z7 would actually be a centered
and normalized sum of M iid binomial random variables with [T'/y] trials and
success probability Fon(z1) — Fon(T). Here, we do not need the assumption
that Fo, is regularly varying. In fact, it suffices to have

= /M(Fon(s) + Foa(s)) ds < oo.
0

In this way, the existence of a stationary renewal sequence (7},), defined by
(5.2), is guaranteed.

The following result shows that Zp converges weakly to a normal distribution
as T — oo.

Theorem 6.5 Suppose p < 0o. If M and xr satisfy (6.14), then as T — oo
M
> ZiW S N@O,uY).
m=1
Q

Notice that there is no distinction between fast and slow growth of M. The
proof of Theorem 6.5 is presented in Section 6.C.
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Appendix
6.A Proof of Theorem 6.1

We start with proving convergence of NX?. We use Kallenberg [53] (see Theo-
rem 6.D.1) and consider the class A of sets

k
U aJ7 C],d]

(¢j,d;] C [0,00) x(0,00], 5 =1,...,k. We may assume that

for k > 1, [a;j,b;) x
;) % (¢;,d;] are mutually disjoint. We ﬁrst show

the sets [a;j,b
P(N¥(A) =0) = P(N(A) =0).

Notice that
E(m) 1

E M
:ZZ Z I(CjZT,dij](Xz'(m))-

=i
Let e — 0 satisfy
b(MT)=o(erT) and 1/log(T)=o(er) asT — oo. (A1)
Define the event
By = {I€% — pupe| < erpge, t=aj,b, j=1,...,k, m=1,...,M}.

From Lemma 5.A.3 it follows that P(B%) = o(1). (Lemma 5.A.3 assumes
€ (1,2). However, a close inspection of the proof shows that the result holds
for any o > 1.) Define

[(Ofer)prs;]-1

E M
Nll% (4) = Z Z Z Lejer djer] (Xi(M)) .
j=1m=1

=li=[(1Fer)pra;]
We have the inequalities
P(Ng(4) =0, Br) < P(N,2(4) =0),
and
P(Ng(4) =0, Br) > P(N,%(4) =0, Br) > P(N,% (4) = 0) - P(Bf).
We will show that

P(NL‘); (A) =0) = P(N(A) =0).
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The proof for P(NL"_ (A) = 0) is analogous. First, we assume that the sets
T

[a;,b;) are mutually disjoint. This assumption is relaxed later on. Moreover,
assume that
0<a1 <b<as<by<---<ap<b, <o0.

Then, for large T', [(1 + er)ure;] — 1 < [(1 — €r)piTa;,,), for j =1,...,k = 1.
Using (6.10), we have

P(N',(4) = 0)

K

M

I
ma-

[P(X,/."L'T ¢ (Cjadj]a i = [(1 - ET)I‘LTaj]’ tey [(1 + eT)NTbj] - 1)

.
Il

et
]MT(b] Y

e
-

[1 — Fon(cjzr) + Fon(djzr)

.
Il
-

k o g MT(bj—aj)p"
~ H 1— 44 3
MT MT

) T —d,-a)r“’

S
Il
-

et} uMT
k
~ expq—pt Y (b —ay)(c;* —d; %)
j=1
— P(N(A) =0).

The final step consists of dropping the assumption that the [a;, b;) are mutually
disjoint. We only consider the case k = 2. The general case is completely
analogous. Let

2
A= Jla;,b5) x (¢5,4d5],
j=1

where a1 < as < by < by and, for example, ¢; < di < ¢2 < dy. Then
P(NLO+ (4) = 0) equals
T

[P(Xi/ar & (c1,di), i = [(1 = en)puray], s [(1 = en)puras] = 1,
Xifzr & (c1,di] U (c2,da], @ = [(1 — €r)pura,]; - - -, [(1 + er)pre, ] — 1,

Xifor @ (condal, i = [(1+ er)pmn], .- [0+ enhurss] ~ 1]

~ [0 = Fonlermr) + Fon(dyog)) T 00w
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(1 = Fonlcrzr) + Fon(dizr))(1 — Fon(c2zr) 4+ Fon(daay))Ttr—2)1"

— -1 M
(1= Fon(eswr) + Fon(dpr)) T2 0007

]MT(bj—aj)u_1
)

2
H [ on(cjzT) + Fon(d )

which converges to P(N(A) = 0) as before.
It remains to show that for I = [a,b) x (¢,d] C E, we have

limsup P(N®(I) > 1) < P(N(I) > 1).

T—oo

Since I € A, by the first part of the proof,

limsup P(NP(I) > 1) < 1—liminf P(N®(I) = 0) — liminf P(N®(I) =
T— oo T—o0 T—o0

= 1-P(N(I)=0)—liminf P(N®(I) =1).

T—o0

Thus it suffices to show that
liminf P(N}*(I) =1) > P(N(I) = 1).
T—oo

As before, let e — 0 satisfy (A.1) and define

Br = {IE(TT’ —pre| < erpre, t=a,b, m=1,...,M}.
Write (slightly abusing notation)

[I—er)pTs]-1

NLO_ (I) = Z Z 1(ch,dzT] (Xz(m)) ’

‘ m=1i=[(1}ex) ]

[A4er)pra]—1

Nﬁar = Z Z l(ch,dzT](Xi(m))a

=[(1—er)pral

M [(I4er)prs]—1

Z Z ]-(czT,dzT](Xz'(Tn)) :

=[(1—er)prs]

b
N,

Since NL"_ (I), N and N! are mutually independent, we have
T

P(Ng(I)=1) > P(NP(I)=1, Br)
> P(N2(I)=1, N& =0, N, =0, Br)
T
> P(N2(I)=1, N2, =0, N/, =0) - P(Bj)
T

= P(N'.(I) = 1)P(N?, = 0)P(N!, = 0) - P(B5).

B
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By Lemma 5.A.3 (as above), P(BS) — 0. Using (6.10), we observe that as
T — o0

[ — — M(QGT'U,Tafl)
P(NeaT = 0) = 1- Fon(ch) + Fon(d.'L'T)]

r @ d— M(2eTTau_1—1)
~ -
T MT T MT

~ 1-— - 1.

2a(c™* —d™9) er MT
uMT
Analogously, P(N! = 0) — 1. Set

rr = M([(1 - er)prs] — 2 — [(1 + eT) pral) -

Finally, by (6.10) and the first part of the proof, P(NLO_ (I) = 1) equals
T

rr—1

rr [Fon(cwr) = Fou(dor)| [t = Fon(eor) + Fon(dar)

MT(®b - a) (¢~ —d=®)

~ . ———— P(N(I) = 0)
= 02Tt g 0- e - )
— P(N(I)=1).

This completes the proof for N1°. Since the proof is based upon the fact that
the counting process &7 can be replaced by its mean pr, the same techniques
can be used to show convergence of N;”. ©

Remark To prove convergence of N;P we can also apply Kallenberg [52], The-
orem 4.7 (see also Resnick [78], Proposition 3.22). This involves showing that
ENzP(A) —» EN(A), which follows from Wald’s identity and (6.10). Another
alternative way to prove Theorem 6.1 is by starting with convergence of either
NI or N;P and then showing that the distance between NX and N;* in the
vague topology on M,(E) (see Resnick [77], Section 3.4) becomes arbitrarily
small as T' — oo. By virtue of Kallenberg [52], Theorem 4.2, this means show-
ing that for each continuous function f : £ — R with compact support, one
has
P(NP(f) = N°(£)] > €) = 0,

for every € > 0.
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6.B Proof of Theorem 6.3

We need the following lemma.

Lemma 6.B.1 Assume F,, satisfies (6.12). Suppose M satisfies the Fast Growth
Condition and ar satisfies (6.13). Let 0 < a < b <1 and define

B, ={(T - X;)/ar € (a,b]}, i>1.

AsT —

§r i—1
ME (Zzhgml;l) —0.

=2 [=1

Proof. Using a first order Taylor expansion, we have for T' large enough

P(B)) = Fou(T —bar) — Fou(T — aay)
= Fon(T — bar) 3 Fou(T — aar)
= Pl ( FonlT) FonlT) )

= Fum ((1-05) - (1-a%) )
= FoulD) (alb-0)F +0(F)) -

Hence, by (6.12) and (6.13)

MT P(By) ~alb—a) M ag Fou(T) ~ a(b—a). (B.1)
We have
Er i—1 T 2 T
2 Z Z 1g;nB, = (Z 1Bi> — Z 1p,
i=2 =1 i=1 i=1

2 ér

T
(Z(lBi - P(Bl))) +2 P(By) &r ) 1,

i=1 i=1

ér
—[P(B] & - 15,
=1
= Ir+2I1Iyr—IIIy —IVp.

From Gut [43], Theorem II5.1, we have that for 7 > 0

r

T
E¢r ~ o as T — 00. (B.2)
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Using this fact and (B.1), we obtain
M EIIIz ~ (const) M~ — 0.

Gut [43], Theorem 15.3, gives

2

£r
E (Za& - P(Bl))> = Var(1p,) E¢r. (B.3)

i=1
Using this, we find that
M (EIT — EIVT) = M Var(lBl) EﬁT - M P(Bl) EfT
= M (P(B.) - [P(Bl)]2) E¢r — M P(B) Eér

—M [P(B1)]? E¢r,
which is o(1) by (B.1) and (B.2). For IIr we have

T
M EIly =M P(B1) E (& > (s - P(Bl))) + M [P(B)) B¢ .

i=1

The second term on the right-hand side is o(1) by (B.1) and (B.2). Using the
Cauchy-Schwarz inequality and (B.3), we obtain for the first term the upper
bound

M P(By) (E¢;)'? (P(B1) [1 - P(B1)] Eér)'/?,

which is o(1) by (B.1) and (B.2). This completes the proof. Q

Proof of Theorem 6.3 We consider sets of the form
k
A= U[Tj’sj) x (aj,bj]
j=1

for k > 1, [rj,s;) x (aj,b;] C[0,00) x (0,1], j =1,...,k. We may assume that
the sets [r;, ;) x (a;, b;] are mutually disjoint. Notice that Nt are the row sums
of a triangular array of point processes. According to Theorem 6.D.2, it suffices
to show

M P(N{V(4) >1) » EN(A)  and M P(N{P(4)>2) > 0.

Since -
ENp(4) =" M P(NY(4) > n),
n=1

it also suffices to show

ENr(A) » EN(A)  and M P(N{V(4) > 1) » EN(A).
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Define
Bij:{(T—Xi)/aTG(aj,bj]} 1 >1, jZl,...,k.

Notice that

(m)
Ts;

M
:Z Z 1[T—bjaT,T_a]-aT)(Xi(m))_

m=li=gn 41

Using the fact that &7 is a stopping time, Wald’s identity and (B.1), we obtain

k
ENr(A) = p™) (s; —r;)M T P(By;)
j=1

-1

~ o s; —rj)(bj — aj)

_ij

Jj=1

EN(4).

~

It remains to show that M P(J/\\fél)(A) > 1) - EN(A). By Markov’s inequality
we have R R
limsup M P(N{"(4) > 1) < EN(A).

T— o0
For nonnegative vectors n, = (n,(ql), ... ,n,(qk)) and ng = (ngl), ... ,ngk)), let
Ags = {ETT' = ng'])a §T8j = ngj)7 .7 = ]-7 .- 7k} -
Notice that for n, < ns, which means that %) < n{ for j=1,...,k, the AZs
constitute a partition of Q. We write

€Ts;

P(NP(4) >1) = Z Y o1, >1

J=1i={rr; +1

k €rs;

U U By

§=1 i=gr,;+1

(J)

>p U U (Bj; N AR)

nr<ng J=1 ;—p £1)+1

For fixed n, and ng, we apply the inclusion-exclusion formula on the two unions
as a whole, which yields the lower bound

(J)

o kE oj—1
> 5 o - Y5 S S rens.n
Jj=1 izngj)-l—l Jj=2n=1;_ n(J)-l—l 1= n(")—i-l
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() el

k nl
- Y Y Y Pwynmynam).
(

7=l i=n) 42 1=l 41

Using P(B) = E(1g) and the linearity of the expectation, this equals

& n{d) k-1 n{d) n(™
E E E 1B,-]-0A23 - E E E E E 1B”nBlnr1A§§
j=1 i=n{) 41 j=2n=1 i=n 1 1=n 1
k n{ i—1
E E E E ]‘B,'jﬂBljﬂA::
j=1 i=n 42 1=n@) 41

Since the A are a partition of 2, we have shown that

M P(N{D(4) > 1)

k €rs; E oj-1 £rs; €Tsy
> MY E| Y 1, | -MYNE| Y Y is,0m.
j=1 i=€rn;+1 j=2n=1 i=Ery;+1 1=Err, +1

ETs;

k
wyE( Y Y
j=1

i=grr;+2 1=¢rr; +1
= Ir—IIr—-1IIIr.

Notice that I; = ENy(A), which converges to EN(A). It remains to show that
IIp and IIIp converge to zero. Since, for fixed j

€Ts; §Ts; 41
E E 1B,;nB,; < E E 1B,;nBy; 5
i=€rr; +2 I=E1r; +1 =2 =1

1117 — 0 follows from Lemma 6.B.1. Next we deal with 7. Fix j and n. We
have n < j. Assume that the sets [r},s;) are ordered such that

n<j = rn<rj.

Denote
£rs ETsp

D’gg,n) = Z Z ]'Biijln ’

i=8rr; +1 I=61r, +1

and define the following disjoint partition of :
Ci(g,n) = {&rs, <&r;},
Ca(j,n) {&rs; > Ers, > &1y } s
C3(j,n) = {&rs, >&rs; }-
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We will show that

o) €rsj j—1 Ersp 1-1
DTZ’" <3 Z Z léiﬂgt + 2 Z Z 1§iﬂ§z ’ (B'4)
=2 [=1 =2 i=1

where
B; = {(T - X;)/ar € (min(a;,a,), max(b;,b,)]}, i>1.

Then II7 — 0 follows from Lemma 6.B.1. It is not difficult to see that

gTsj ETsy, ET"’J’ i—1
(j7n) -~ -~ o~ o~
D3 leygm < Z Z 1508, < Z Z 1505, - (B.5)
i=grr;+1 I=Err, +1 i=2 |=1

Next consider Cs(j,n). From the definition of &r in (5.3) it follows that if
Cs(j,n) # 0, then s, > r;. The ordering of the sets [r;,s;) now implies that
[rj,s;) and [ry, sp) are not disjoint.

Since [r}, s;) x (a;, b;j] are mutually disjoint, it follows that (a;, b;]N(an, by] =
(0. Hence, B;; N By, = 0 if i = [. The reasoning above implies that

ETs; ETs;

D:(lz’n) 102(‘7’”) S Z Z 1BijnBln
=€ +1 I=Er,, +1

i1
€Ts; €Ts;
< X X lsem
=Errn+1 1=Erp, +1
13
§Ts; 41
=2 [=1

Since Cs(j,n) # 0 also implies that [r;, s;) and [ry, s,) are not disjoint, we have
analogously

) ETsy ETsy ETsy, i—1
Dgg’n)lcﬂj’") < Z Z IBynBy, <2 Z z 15,05, - (B.7)
=§Trn+1 I=E7y, +1 i=2 I=1
i

The proof now follows by observing that (B.5)—(B.7) together imply (B.4). ©

Remark From the steps in the proof of Theorem 6.3 it is clear that similar
results hold if one imposes a second order regular variation condition on Fy,
instead of assuming (6.12). Proposition 6.4 will also follow in this case. Such a
proof would, however, be more technical.
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6.C Proof of Theorem 6.5

For ease of presentation, we introduce some notation. Set

X; = lpp,(Xi), fi= EX, & =Va(X),

For a < b, write . .
Fon(aa b) = Fon(a) - Fon(b) .

Notice that .
6% ~ fig ~ fig ~ Fon(zr,T). (C.1)

For n > 1, let
So=0, S,=Xi1+--+X, and F,=0(D,X,Y1,....X,, V).
Recall that &7 is a stopping time with respect to the filtration (F,).

We will derive Lyapunov’s condition (with 6 = 2) for the central limit theo-

rem, i.e. as T — o0
M E(z(l))4
— 2T 2 M E(ZP) -0
(M E(Z5))2)2 ! '

We have ~ 4
M E(Z1)* = ElSen — &rit)” (C.2)
M T? [Fon(zr,T)]?

The approach is to calculate E(§5T — &r)* by first constructing a martingale
and then using the optional stopping theorem. It can be seen that

E[(Sp = ni)*[Fa1] = (Spo1 = (n=1)@)* +65° (Su1 — (n = 1)ia)?

+4fi3 (Sn—1— (n— 1)) + fia -
Define
N ~ ~
An = Y [(8n = ni)* = El(Sn = ni)*|Fna]] -
n=1
By definition Ay is a martingale with respect to the filtration (Fu) and from

the optional stopping theorem (see Gut [43], Theorem A2.4) it follows that
EA¢, =0. This implies

Er
E(Se, —&rit)t = 66°E|> (Spo1—(n— l)ﬂ)zl (C.3)
n=1
fr
+4fis B | (Sp1—(n—1)ji)| + jis Bér .
n=1
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From (E.1) in Lemma 6.E.1 it follows that

§r [€r—1
E Z(Enfl —(n-Dp)| = E Z (X; — i) (&r — i)]
n=1 L i=1
et
= E Z (X; — ﬁ)i]
[€r -
= B (Xi- )i - Blér(Xe, — i)
= —Bler(Xer — )] (C.4)

The final step follows from the fact that Z?:l(jfi — [1)i is a martingale with

respect to (F,) and the optional stopping theorem.

Continuing the analysis, we write
&r _ £ n—1 _
E [Z(Snl —(n— 1)/3)2] = b Z Z(Xi - ﬁ)Q] (C.5)
n=1 n=2 i=1
§r n—1i-1 _ _
+2E [Z Y Xi-w - ﬁ)]
n=3 i=2 j=1
By (E.1) in Lemma 6.E.1, the first term equals
€r—1 €r _
E [ > (X — ) (r - i)] = E lZ(Xi - ﬂ)%'] — Eler(Xer — )7
i=1 i=1
6.2
= 5 [B& + Eérl
~ Blér(Xe, - 1)) (C.6)

In the last step we used the fact that 37 (X; — )% — 6%n(n + 1)/2 is a
martingale with respect to (F,,) and the optional stopping theorem.
By (E.2) in Lemma 6.E.1, the second term in (C.5) equals

i—1

.
S Xi-per -0 (X - R

2F i
i=2 j=1
[er i1 _ €r—1
= 2B ) (X5i—@) ) (X —@)j| 2B |(Xep =) Y (X — )i
j=1

=2 j=1
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&
- 2F l(XgT — Y - fm} +2 Bler(Rey — )], (1)
j=1
In the final step we used the fact that Z?Zl()?i — [ Z;;ll (X ; — [1)j is a mar-
tingale with respect to (F,,) and the optional stopping theorem.
Combining (C.3)—(C.7) yields
B(Sgr —éri)' = 36" B& + (35" + juu) Eér
~ 4 i3 Blér (Xep — )]

+6 6% Elér (Xe, — )7

Jj=1

&r
-126° E [(XgT - (X - ﬁ)j] :
We will now show that

E(Se, — &rit)* = o(M T? [Fou(zr, T)]?).

The proof of the Lyapunov condition then follows from (C.2).
By virtue of (B.2), (6.14) and (C.1) we obtain

36* B& + (36" + jis) Eér = o(M T? [Fou(zr,T))?).
Furthermore,
fis Elér (Xe, —)]| < |fis| Bér ~ p='T Fon(ar,T)

= o(M T? [Fon(zr, T)?),

and
&2 Eler (Xer — )2) < 62 Eép ~ p T Fon(zr,T)
= o(M T? [Fou(zr,T)).
Finally,
~ gT ~ gT ~
5 |BE|(Xer —) Y (X; —)i|| < &2 E D IX; —flj
i=1 =1
T _ _
= G*E|> (X, - jilj — BIX — jilj)
Jj=1
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ér
+6 E Y j| EIX -l
j=1

< 252 Eg% Fon(wT, T)~2 p2T? [Fon(:er,T)]2
= o(M T? [Fou(z7,T)]%).

In the third step we again used the fact that &7 is a stopping time. This com-
pletes the proof. Q

6.D Convergence to a simple point process

Let M,(E) denote the space of all point measures defined on the state space
E = [0,00) x (0,00]. The space M,(E) is equipped with the vague topology
(see Resnick [77], Section 3.4). A point process N on E is called simple if

P(N({z}) <1 forallz € E) =1,

i.e. if any point x counts at most once, with probability 1. Notice that a Poisson
Random Measure (PRM) N with mean measure v is simple if v is atomless.

Let Z be the class of rectangles [a, b) X (¢,d] C E and let A be the collection
of sets

k
A=, LeT, j=1,...,k, k>1.
j=1

Observe that we may assume that the sets [a;, b;) X (¢, d;] are mutually disjoint.
If two such sets intersect, they are the union of at most three mutually disjoint
sets of the form [a, b) X (¢,d]. Notice that A is closed under finite unions and
intersections.

It can be seen that for any compact K C E and open G C E with K C G,
there exists an A € A such that K C A C G. In Kallenberg [53] a class A with
this property is called a separating class. Evidently, finite unions of elements in
T constitute a separating class. Any such class 7 is called a pre-separating class.

The following result is due to Kallenberg [53] and is an improved version of
Kallenberg [52], Theorem 4.7.

Theorem 6.D.1 Suppose N and Np, T > 0, are point processes on E and N
is simple. If for all A€ Aand I €T

Jim P(N7(4)=0) = P(N(4)=0),
limsup P(Np(I) >1) < P(N(I)>1),
T—o0
then Ny 3 N in M, (E). vi
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Next we state a result on the convergence of a triangular array of point processes
to a PRM. Let Mr be a non-decreasing integer-valued function such that My —
00 as T — 0. Let

(NS™ m =1,..., My, T >0)

be a triangular array of point processes on F, such that for each T the processes
(N%m), m = 1,...,My) are mutually independent. The array is uniformly
asymptotically negligible (u.a.n.) if

lim sup P(N{™(4)>0)=0,

T—00 = 1,...,Mrp

for all sets A € A. Define the row sums
Mt
Nr=Y NI, T>o0.

The following result can be found in Daley and Vere-Jones [22], Theorem 9.2.V.

Theorem 6.D.2 Let N be a simple PRM with mean measure v. If the trian-

gular array (N;m)) is w.a.n., then Nt 4 N in My (E) if and only if for all sets
Ae A

MT MT
lim S P(N{™(4) >1) =v(4) and  lim > P(N™(4)>2)=0.

T—o0 T— o0
m=1 m=1

Q©

6.E An identity in law for stopped random sums

Here we use the notation introduced at the beginning of Section 6.C.

Lemma 6.E.1 Let f : R — R be a measurable function. Then

§r—1 r—1
Z FX)Er -0 Y f(Xi, (B.1)
i=1
and
fr—1 i—1 Er—1 i—1 _
Zf e —i) Y f(X) £ Zf )Y HX)i- (E.2)
Jj=1 j=1

Proof. First we prove (E.1). We have

gr—1
(Zf )(Er — i) > 95)

138



o0 §r—1
ZP< F(X) (Er —i) > €T=n)

n=0 i=1

[e's} n—1 _

> P (Z fX)(n—i)>az, Sy 1 <T, Sy > T)
n=0 i=1

[e’s) n—1 _

2P (Z f(Xni)i > @, Spoy <T, Sy > T) :
n=0 i=1

Notice that the probabilities above are invariant under a permutation on
Xq,...,X,_1- We apply the permutation X; — X,, ;, ¢ =1,...,n — 1. This

yields

pr

> n—-1 n—1
yr (Z f(X)i>z, D+ Y (Xpoi+Yi) <T,
n=0 i=1 i=1

n—1
D+ (Xni +Y3) + (Xp +Y5) > T)

S Er—1
yp (2 f(X)i>z, &p =n)
n=0 i=1
£r—1 _
P (Z f(Xi)i> a:) .

This completes the proof of (E.1). The proof of (E.2) is along the same lines
and therefore omitted. Q
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Summary

Since the beginning of the 1990s a growing number of computer networks from all
over the world has been linked together. Nowadays, they constitute the global
network called the Internet. The Internet has hundreds of millions of users,
from private individuals and corporations to government officials and scientists,
and offers a broad range of applications: e-mail, newsgroups, remote login, file
transfer, audio and video streams, chatrooms and the popular World Wide Web.
Although the Internet and computer networks in general have many benefits,
some technological difficulties have been encountered. As surely everyone has
experienced, the operation of transferring data between two computers in a
network can be quite troublesome. At busy hours, when there are a lot of
active users, the network can be congested, resulting in long transmission delays
or difficulties in establishing a connection between the source and destination
computer.

In order to get a better understanding of the dynamics of the data traffic
in computer networks, a number of empirical studies of network traffic mea-
surements has been conducted. As a benchmark for comparison voice traffic in
the traditional telephone system has been used. In the telephone system call
arrivals can be modeled by a Poisson process, i.e. with exponential inter-arrival
times. Moreover, the distribution of call lengths has an exponentially bounded
tail. From an engineering perspective these are very convenient properties, since
the long-term arrival rate of the Poisson process, together with the mean call
length, roughly determines the capacity of the network that guarantees reliable
telephone communication.

Measurements of computer network traffic

The situation in computer networks, however, has been found to be very differ-
ent. Computer network traffic has been studied at two levels: the application
level and the packet level. At the application level file sizes, connection durations
and transmission times are the main subjects of analysis. Instead of exponential
their distributions appear to be heavy-tailed, i.e. P(X > z) ~ cx~ %, © — oo,
with ¢ > 0 and a € (1,2). Consequently, Var(X) = oo and extremely large val-
ues of X occur with non-negligible probability. At the packet level the so-called
workload of the network is measured. When a file is sent from a source to a des-
tination computer, it is decomposed into small packets which are sent through
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the network cables. After arriving at the destination computer, the packets are
put together again and the original file is reconstructed. The workload on a
cable or link in the network is measured by counting the number of packets or
bytes passing the measurement point in a small time interval, e.g. 1 second. In
this way, the workload per second is determined. Even for large time intervals,
the dependence in the series of workload measurements appears to be rather
strong: at large lags the sample autocorrelations still seem significantly differ-
ent from zero. This phenomenon is often referred to as long-range dependence.
This would indicate that random cycles of arbitrary length are present in the
workload data. Another striking feature is that when the time interval used
for measuring the workload is increased, the relative variability of the workload
remains roughly the same, or, in other words, the workload shows a similar
burstiness across a wide range of time scales. This property has been observed
for time intervals ranging from 0.01 up to 100 seconds and resembles, in some
sense, the theoretical notion of distributional self-similarity. Unlike voice traf-
fic, computer network traffic does not smooth out when viewed at increasingly
larger time scales.

Heavy tails, long-range dependence and self-similarity are believed to be
present in traffic measurements on networks of different scales providing dif-
ferent applications, from the late 1980s till the present day. Therefore, these
three features are regarded as traffic invariants. On the whole, this implies that
computer network traffic behaves rather erratic compared to voice traffic in the
telephone system, and, hence, that computer networks are a great challenge to
the engineer and the scientist.

Non-stationarity versus long-range dependence

By definition a stochastic process exhibiting long-range dependence is station-
ary, i.e. its underlying distribution does not change during the time the process
is observed. However, no general test for the stationarity of an observed time
series is available. Also, the graphical methods that are often used to detect
long-range dependence in a time series are not very reliable. It is well-known
that these graphical methods can interpret non-stationarities like shifts in the
mean or a slowly decaying trend as the presence of long-range dependence.
In Chapter 3 of this thesis we show that a realization from a non-stationary
ARIMA (p,1,q) process, with appropriate parameter values, can indeed exhibit
long-range dependence in this ‘graphical’ sense. In Chapter 4 we analyze series
of workload measurements in various computer networks and find that most of
them can be modeled by an ARIMA(p,1,q) process, with small p and g. This
shows that, when using graphical methods, it is virtually impossible to distin-
guish between non-stationarity and long-range dependence in an observed time
series. Here however, given the complicated nature of a computer network, with
applications and connections being activated and terminated during the mea-
surement, period, the option of non-stationarity is probably the most reasonable
one.
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Modeling computer network traffic

An attempt to give a ‘physical’ explanation for the observed traffic character-
istics has been made by using a mathematical modeling approach. Two sim-
ple models have been proposed which both use the assumption of heavy-tailed
transmission times to explain the long-range dependence in the workload of the
network. Also, it is shown that the centered and properly normalized cumu-
lative workload can be approximated, in some sense, by a self-similar process.
One of these two models, the ON/OFF model introduced by Willinger et al.
[106], is the subject of Chapters 5 and 6 of this thesis. In this model, traffic
is generated by M independent and identically distributed ON/OFF sources.
If a source is ON it transmits data at unit rate, e.g. 1 byte per time unit.
If it is OFF it remains silent. In this way, every individual ON/OFF source
generates a binary ON/OFF process. The lengths of periods in which a source
is ON, the ON-periods, are independently drawn from a heavy-tailed distribu-
tion. Analogously, the OFF-periods are also heavy-tailed. The sequences of ON-
and OFF-periods are assumed independent. It has be shown by Heath et al.
[45] that the stationary version of the ON/OFF process of an individual source
exhibits long-range dependence. Using independence, the same is true for the
total workload, i.e. the superposition of the M ON/OFF processes.

In Willinger et al. [106] it is shown that the centered cumulative workload
up to time T, when properly normalized, converges in finite dimensional dis-
tributions to fractional Brownian motion if first M — oo and then T — oo.
In Taqqu et al. [101] the limits are reversed and a different normalization is
used to obtain stable Lévy motion as limit process. Both fractional Brownian
motion and stable Lévy motion are self-similar, but their dependence structures
are totally different. The increment sequence, at equidistant instants of time,
of fractional Brownian motion is stationary and exhibits long-range dependence
(thus preserving the long-range dependence in the pre-limit workload), while
the increments of stable Lévy motion are independent. In Chapter 5 of this
thesis we consider simultaneous limit regimes in which M is a non-decreasing
function of T', converging to infinity as 7' — co. We show that when M grows
faster than some ‘critical rate’ fractional Brownian motion is obtained in the
limit. On the other hand, if M grows slower than this ‘critical rate’ stable Lévy
motion appears as limit process.

In Chapter 6 we use the framework of the ON/OFF model to study the
number of ON-periods up to time T exceeding a high threshold. Again, we
consider simultaneous limits of M and T'. Moreover, also the threshold depends
on T. We distinguish between the ‘slow’ and ‘fast’ growth conditions on M.
Although different approaches are needed, in both cases we are able to show
that the number of exceedances converges to a Poisson random variable if the
threshold satisfies a balancing condition guaranteeing a constant average number
of exceedances in the limit. We also show that if the threshold grows slower
than this ‘balancing rate’, the number of exceedances satisfies the Central Limit
Theorem.
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Samenvatting

Vanaf het begin van de negentiger jaren van de vorige eeuw zijn steeds meer com-
puternetwerken over de hele wereld aan elkaar gekoppeld. Tegenwoordig vormen
zij het wereldwijde netwerk dat bekend staat als het Internet. Het Internet heeft
honderden miljoenen gebruikers, van individuele burgers en bedrijven, tot over-
heidsinstanties en wetenschappers. Deze gebruikers staat een breed scala aan
toepassingen ter beschikking: e-mail, nieuwsgroepen, remote login, file transfer,
audio en video stromen, chatbozen en het populaire World Wide Web. Hoewel
de voordelen van het Internet en computernetwerken in het algemeen legio zijn,
moeten er nog wel wat technische problemen overwonnen worden. Zoals iedereen
waarschijnlijk wel eens heeft ervaren verloopt het sturen van data tussen twee
computers in een netwerk lang niet altijd even soepel. Wanneer er veel ge-
bruikers op het netwerk aanwezig zijn, kan het netwerk verstopt raken en is
het mogelijk dat een gevraagde verbinding tussen de zendende en ontvangende
computer niet tot stand wordt gebracht.

Om een beter begrip te krijgen van de dynamiek van het dataverkeer in
computernetwerken, zijn metingen aan dit dataverkeer in een aantal statistische
studies geanalyseerd. De resultaten zijn vergeleken met de eigenschappen van
gespreksverkeer in het traditionele telefoonnetwerk. In het telefoonverkeer is het
redelijk om aankomsttijden van gesprekken te modelleren als een Poisson proces,
d.w.z. met exponentiéle tussenaankomsttijden. Bovendien duidt de empirische
verdeling van gesprekslengtes op het bestaan van een exponentieel begrensde
staart. Gezien vanuit het standpunt van de ingenieur zijn deze eigenschap-
pen bijzonder aantrekkelijk, want het gemiddelde van het Poisson proces en de
gemiddelde gespreksduur bepalen dan samen in grote lijnen de capaciteit van
het netwerk die nodig is om de binnenkomende telefoongesprekken te verwerken.

Metingen van dataverkeer in computernetwerken

Echter, bij computernetwerken ziet het er totaal anders uit. Het dataverkeer
in deze netwerken is op twee niveaus bestudeerd: het applicatieniveau en het
pakketniveau. Op het applicatieniveau zijn de lengtes van bestanden en de duur
van connecties en transmissies de meest geanalyseerde variabelen. In plaats van
exponentieel lijken hun verdelingen zwaarstaartig, d.w.z. P(X > z) ~ cx™%,
x — 0o, met ¢ > 0 en a € (1,2). Dit heeft tot gevolg dat Var(X) = oo en
dat extreem grote waarden van X optreden met een niet te verwaarlozen kans.
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Op het pakketniveau wordt de zogenaamde werklast van het netwerk gemeten.
Wanneer een bestand van een zender naar een ontvanger wordt gestuurd, wordt
deze opgesplitst in kleine pakketjes die door de kabels van het netwerk worden
verzonden. Na aankomst bij de ontvangende computer worden de pakketjes
weer samengevoegd tot het oorspronkelijke bestand. De werklast op een kabel
of verbinding in het netwerk wordt gemeten door het aantal pakketjes of bytes
te tellen dat het meetpunt passeert in een klein tijdsinterval, bijvoorbeeld 1
seconde. Op deze manier wordt per seconde de werklast bepaald. De athanke-
lijkheid in de reeks van werklastmetingen schijnt, ook op afstand, nogal sterk
te zijn: bij grote tussenperioden lijken de autocorrelaties nog steeds signifi-
cant verschillend van nul. Dit fenomeen wordt long-range dependence genoemd.
Dit zou kunnen wijzen op het voorkomen van periodiciteiten met willekeurig
lange perioden in de werklastdata. Een andere opzienbarende eigenschap is
dat de relatieve variabiliteit van de werklast ruwweg onveranderd blijft wanneer
het tijdsinterval, dat voor de werklastmetingen wordt gebruikt, vergroot wordt.
Anders gezegd: de werklast vertoont eenzelfde soort grilligheid over een groot
aantal tijdsschalen. Deze eigenschap is waargenomen voor tijdsintervallen van
0.01 tot 100 seconden en vertoont, op een bepaalde manier, gelijkenis met het
theoretische concept van self-similarity van verdelingen. In tegenstelling tot
verkeer in het telefoonnetwerk, vlakt de werklast in computernetwerken niet uit
wanneer deze op steeds grotere tijdsschalen wordt bekeken.

Er wordt algemeen aangenomen dat zware staarten, long-range dependence
en self-similarity voorkomen in metingen van dataverkeer bij netwerken van
verschillende grootte met verschillende applicaties, vanaf 1989 tot nu. Daarom
worden deze drie eigenschappen ook wel beschouwd als invarianten van dataver-
keer. Samenvattend betekent dit dat dataverkeer in computernetwerken zich een
stuk grilliger en onregelmatiger gedraagt dan gespreksverkeer in het telefoon-
netwerk. Dus vormen computernetwerken een grote uitdaging voor de ingenieur
en de wetenschapper.

Niet-stationariteit of long-range dependence

Per definitie moet een stochastisch proces met long-range dependence stationair
zijn, d.w.z. dat de onderliggende verdeling onveranderlijk is gedurende de tijd
dat het proces geobserveerd wordt. Echter, er bestaat geen algemene toets voor
de stationariteit van een waargenomen tijdreeks. Ook zijn de grafische metho-
den, die vaak worden gebruikt om long-range dependence in een tijdreeks op
te sporen, niet erg betrouwbaar. Het is bekend dat deze grafische methoden
niet-stationariteiten als sprongen in het gemiddelde of een langzaam damende
trend kunnen interpreteren als long-range dependence. In Hoofdstuk 3 van dit
proefschrift laten we zien dat een realisatie van een niet-stationair ARIMA((p,1,q)
proces, met geschikte parameterwaarden, inderdaad long-range dependence ver-
toont in deze ‘grafische’ betekenis. In Hoofdstuk 4 analyseren we reeksen van
werklastmetingen bij verschillende computernetwerken en komen we tot de con-
clusie dat de meeste reeksen gemodelleerd kunnen worden als een ARIMA(p,1,q)
proces, met kleine waarden p en ¢q. Dit toont aan dat het schier onmogelijk is om,
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op basis van grafische methoden, onderscheid te maken tussen niet-stationariteit
en long-range dependence in een geobserveerde tijdreeks. Echter, gegeven het
complexe karakter van een computernetwerk, met applicaties en connecties die
geactiveerd en beéindigd worden gedurende de meetperiode, is de optie van niet-
stationariteit hier waarschijnlijk de meest redelijke.

Het modelleren van dataverkeer in computernetwerken

Door gebruik te maken van wiskundige modellen wordt een poging gedaan
om een ‘fysische’ verklaring te geven voor de vermelde eigenschappen van het
dataverkeer. Dit heeft twee eenvoudige modellen opgeleverd die beide de aan-
name van zwaarstaartige transmissieduren gebruiken om de long-range depen-
dence in de werklast van het netwerk te verklaren. Ook is aangetoond dat de
gecentreerde cumulatieve werklast kan worden benaderd door een self-similar
proces, mits de juiste normalisatie wordt gebruikt. Eén van deze twee mo-
dellen, het AAN/UIT model van Willinger et al. [106], is het onderwerp van
de Hoofdstukken 5 en 6 van dit proefschrift. In dit model wordt dataverkeer
gegenereerd door M onafhankelijke en identiek verdeelde AAN/UIT bronnen.
Wanneer een bron AAN is, stuurt deze 1 eenheid data (bijvoorbeeld 1 byte) per
tijdseenheid het netwerk op. Een bron stuurt niks wanneer deze UIT is. Op deze
manier genereert elke AAN/UIT bron een binair AAN/UIT proces. De lengtes
van de perioden dat een bron AAN is, de AAN-perioden, worden onafhankelijk
van elkaar getrokken uit een zwaarstaartige verdeling. Hetzelfde geldt voor de
UIT-perioden. De reeksen van AAN- en UlT-perioden worden onafhankelijk
verondersteld. Door Heath et al. [45] is bewezen dat de stationaire versie van
het AAN/UIT proces van een individuele bron long-range dependence vertoont.
Door de onathankelijkheid van de bronnen geldt dat ook voor de totale werklast,
d.w.z. de superpositie van de M AAN/UIT processen.

In Willinger et al. [106] wordt aangetoond dat de eindig-dimensionale ver-
delingen van de gecentreerde cumulatieve werklast tot tijd 7', mits juist genor-
maliseerd, naar die van fractional Brownian motion convergeren als eerst M —
oo en dan T' — oo. Tagqu et al. [101] laten zien dat wanneer eerst T — oo en
dan M — o0, en een andere normalisatie wordt gebruikt, het limietproces sta-
ble Lévy motion is. Zowel fractional Brownian motion als stable Lévy motion
zijn self-similar, maar hun afhankelijkheidsstructuren zijn totaal verschillend.
De reeks van aanwassen, beschouwd over gelijke tijdsintervallen, van fractional
Brownian motion is stationair en vertoont long-range dependence (dus de long-
range dependence van de werklast blijft ongeschonden in de limiet), terwijl de
aanwassen van stable Lévy motion onafhankelijk zijn. In Hoofdstuk 5 van dit
proefschrift beschouwen we simultane limieten in M en T, d.w.z. we veronder-
stellen dat M een niet-dalende functie van 7' is die naar oneindig convergeert als
T — oo. We tonen aan dat wanneer M sneller groeit dan een bepaalde ‘kritieke
snelheid’, fractional Brownian motion als limietproces wordt verkregen. In het
geval dat M langzamer groeit dan deze ‘kritieke snelheid’ is stable Lévy motion
het limietproces.

In Hoofdstuk 6 gebruiken we het raamwerk van het AAN/UIT model om
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het aantal AAN-perioden tot tijd 7', dat een hoge drempelwaarde overschrijdt,
te bestuderen. We beschouwen weer simultane limieten in M en T. Ook de
drempelwaarde is een functie van T. We maken onderscheid tussen de gevallen
waarin M ‘snel’ en ‘langzaam’ groeit. Hoewel er verschillende manieren van
aanpak nodig zijn, kunnen we in beide gevallen aantonen dat het aantal over-
schrijdingen naar een Poisson stochast convergeert. Hierbij is het noodzakelijk
dat de drempelwaarde aan een evenwichtsconditie voldoet die ervoor zorgt dat
het aantal overschrijdingen in de limiet konstant is. QOok laten we zien dat
wanneer de drempelwaarde langzamer groeit dan deze ‘evenwichtssnelheid’, het
aantal overschrijdingen aan de Centrale Limiet Stelling voldoet.
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